Effect of Plant Growth Regulators on Sweetpotato Stem Tissue Development and Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions
2.2. Treatments and Application
2.3. Experimental Design and Outline
2.4. Observational Data and Staining Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PGR | plant growth regulator |
IBA | indole-3-butyric acid |
TBO | toluidine blue O |
References
- Loebenstein, G.; Thottappilly, G. Sweetpotato, 1st ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- US Department of Agriculture, National Agricultural Statistics Service. Vegetables 2024 Summary; USDA: Washington, DC, USA, 2024; Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/v405v633x/tt44rh680/vegean25.pdf (accessed on 10 April 2025).
- Villordon, A.Q.; Franklin, J.W.; Talbot, T.P.; Cannon, J.M.; McLemore, W. Transplant and stand survivability studies in sweetpotatoes (abstr). HortScience 2006, 41, 518D. Available online: https://journals.ashs.org/hortsci/view/journals/hortsci/41/3/article-p518D.xml (accessed on 2 April 2025). [CrossRef]
- Hall, M. Influence of storage conditions and duration on weight loss in storage, field survival, and root yield of sweet potato transplants. HortScience 1985, 20, 200–203. [Google Scholar] [CrossRef]
- Stems, Their Parts, Structure, and Function. LabXchange. 2023. Available online: https://www.labxchange.org/library/items/lb:LabXchange:8362abea-bd28-39b0-829f-f3abad4fee1b:html:1 (accessed on 5 January 2025).
- Bidhendi, A.J.; Lampron, O.; Gosselin, F.P.; Geitmann, A. Cell geometry regulates tissue fracture. Nat. Commun. 2023, 14, 8275. [Google Scholar] [CrossRef]
- Arya, G.C.; Sarkar, S.; Manasherova, E.; Aharoni, A.; Cohen, H. The plant cuticle: An ancient guardian barrier set against long-standing rivals. Front Plant Sci. 2021, 12, 663165. [Google Scholar] [CrossRef]
- Vascular Tissue-Xylem and Phloem. 2024. Available online: https://bio.libretexts.org/@go/page/13666 (accessed on 23 November 2024).
- Georgia Tech Biological Sciences. n.d. Plant Development I: Tissue Differentiation and Function. Organismal Biology. Available online: https://organismalbio.biosci.gatech.edu/growth-and-reproduction/plant-development-i-tissue-differentiation-and-function/ (accessed on 16 December 2024).
- Serrano-Mislata, A.; Sablowski, R. The pillars of land plants: New insights into stem development. Curr. Opin. Plant Biol. 2018, 45, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Liu, H.; Wu, Y.; Bing, J.; Zhang, G. New advances in the regulation of stem growth in vascular plants. Plant Growth Regul. 2023, 103, 65–80. [Google Scholar] [CrossRef]
- Asghar, S.; Ghori, N.; Hayat, F.; Li, Y.; Chen, C.-L. Use of auxin and cytokinin for somatic embryogenesis in plant: A story from competence towards completion. Plant Growth Regul. 2022, 99, 3. [Google Scholar] [CrossRef]
- Ammerman, G.R.; Edmond, J.B. Sweet Potatoes: Production, Processing, Marketing; Avi Pub. Co.: Westport, CT, USA, 1971. [Google Scholar]
- Zhu, M.; Lin, C.; Jiang, Z.; Yan, F.; Li, Z.; Tang, X.; Yang, F.; Ding, Y.; Li, W.; Liu, Z.H.; et al. Uniconazole enhances lodging resistance by increasing structural carbohydrate and sclerenchyma cell wall thickness of japonica rice (Oryza sativa L.) under shading stress. Environ. Exp. Bot. 2022, 206, 105145. [Google Scholar] [CrossRef]
- Lailaty, I.Q.; Nugroho, L.H. Vegetative anatomy of three potted Chrysanthemum varieties under various paclobutrazol concentrations. Biodiversitas 2021, 22, 563–570. [Google Scholar] [CrossRef]
- Burton, A.L. Effects of Plant Growth Retardants and Production Irradiance on Morphology, Post-Harvest Performance, and Anatomy of Geogenanthus Undatus ‘Inca.’. Master’s Thesis, University of Georgia, Athens, GA, USA, 2005. Available online: https://openscholar.uga.edu/record/13283?ln=en&v=pdf (accessed on 3 April 2025).
- El-Banna, M.F.; Farag, N.B.B.; Massoud, H.Y.; Kasem, M.M. Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiol. Biochem. 2023, 197, 107639. [Google Scholar] [CrossRef]
- Currey, C.J.; Erwin, J.E. Foliar applications of plant growth regulators affect stem elongation and branching of 11 Kalanchoe species. HortTechnology 2012, 22, 338–343. [Google Scholar] [CrossRef]
- Yeung, E.C. A beginner’s guide to the study of plant structure. In Laboratory Manual for Plant Structure Studies; Department of Biological Sciences, University of Calgary, Ed.; University of Calgary: Calgary, AB, Canada, 1998; pp. 9-1–9-22. Available online: https://www.ableweb.org/biologylabs/wp-content/uploads/volumes/vol-19/9-yeung.pdf (accessed on 3 April 2025).
- Sun, T.P.; Kamiya, Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994, 6, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Ori, N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007, 144, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Bartrina, I.; Novák, O.; Strnad, M.; Werner, T.; Schmülling, T. The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in Arabidopsis thaliana. Front Plant Sci. 2021, 12, 613488. [Google Scholar] [CrossRef]
- Bhangu, P.; Singh, S.; Brasil, C.; Ziya, Z.; Lee, K.M.; Prum, R. Desert Plants: Storing and Protecting Water. 2023. Available online: https://www.csustan.edu/biology/stan-state-greenhouse/desert-plants-storing-and-protecting-water#:~:text=Aloe%20vera%20has%20a%20very,as%20it%20prevents%20excessive%20transpiration (accessed on 18 January 2025).
- Wang, G.L.; Xiong, F.; Que, F.; Xu, Z.S.; Wang, F.; Xiong, A.S. Morphological characteristics, anatomical structure, and gene expression: Novel insights into gibberellin biosynthesis and perception during carrot growth and development. Hortic. Res. 2015, 2, 15028. [Google Scholar] [CrossRef]
- Maynard, B.; Bassuk, N. Effects of stock plant etiolation, shading, banding, and shoot development on histology and cutting propagation of Carpinus betulus L. fastigiata. J. Am. Soc. Hortic. Sci. 1996, 121, 853–860. [Google Scholar] [CrossRef]
- Teixeira, E.; Matsumoto, S.; Silva, D.; Fernandes Pereira, L.; Viana, A.; Arantes, A. Morphology of yellow passion fruit seedlings submitted to triazole-induced growth inhibition. Ciência Agrotecnologia 2019, 43, e020319. [Google Scholar] [CrossRef]
- Lailaty, I.Q.; Nugroho, L.H. Morphological Characters and Plant Pigments Content of Three Varieties of Chrysanthemum Induced by Paclobutrazol Treatments. ResearchGate. 2022. Available online: https://www.researchgate.net/publication/360590874_Morphological_Characters_and_Plant_Pigments_Content_of_Three_Varieties_of_Chrysanthemum_Induced_by_Paclobutrazol_Treatments (accessed on 8 December 2024).
- Majda, M.; Robert, S. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 2018, 19, 951. [Google Scholar] [CrossRef]
- Thakur, T.; Garg, A.; Kaur, P. Growth retardants: Efficient tool for regulating plant architecture and flowering in ornamental crops. S. Afr. J. Bot. 2025, 184, 911–922. [Google Scholar] [CrossRef]
- El-Liel, E.F.A.; Mahmoud, A.A.; Salama, A.M.; El-Ghadban, E.M.A.E.; Khalil, M.K. Improved micropropagation of Stevia rebaudiana Bertoni plant. J. Agric. Stud. 2019, 7, 1. [Google Scholar] [CrossRef]
- Thetford, M.; Warren, S.; Blazich, F.; Thomas, J. Response of Forsythia ×intermedia ‘Spectabilis’ to uniconazole. II. Leaf and stem anatomy, chlorophyll, and photosynthesis. J. Am. Soc. Hortic. Sci. 1995, 120, 983–988. [Google Scholar] [CrossRef]
- Reed, A.N.; Curry, E.A.; Williams, M.W. Translocation of triazole growth retardants in plant tissues. J. Am. Soc. Hortic. Sci. 1989, 114, 893–898. [Google Scholar] [CrossRef]
- Steffens, G.L. Gibberellin biosynthesis inhibitors: Comparing growth-retarding effectiveness on apple. J. Plant Growth Regul. 1988, 7, 27–36. [Google Scholar] [CrossRef]
- Mohd Roseli, A.N.; Fauzi, R.; Tsan, F.Y. Effects of paclobutrazol on the growth and anatomy of stems and leaves of Syzygium campanulatum. J. Trop. For. Sci. 2007, 19, 86–91. [Google Scholar]
- Tsegaw, T. Phenotypic stability for tuber yield in elite potato (Solanum tuberosum L.) genotypes in eastern Ethiopia. Trop Agric. 2003, 80, 110–113. [Google Scholar]
- Wendling, I.; Brooks, P.; Trueman, S. Topophysis in Corymbia torelliana × C. citriodora seedlings: Adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. New For. 2014, 46, 107–120. [Google Scholar] [CrossRef]
- Lens, F.; Gleason, S.M.; Bortolami, G.; Brodersen, C.; Delzon, S.; Jansen, S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytol. 2022, 236, 2019–2036. [Google Scholar] [CrossRef] [PubMed]
Flurprimidol | |||||
---|---|---|---|---|---|
Stem Structure | Control | F20 | F60 | F120 | p Value |
Collenchyma | 9.04 ± 1.8 | 6.31 ± 1.8 | 8.31 ± 1.8 | 9.45 ± 1.8 | 0.611 |
Epidermis | 2.33 ± 0.2 (b) | 2.77 ± 0.2 (ab) | 2.30 ± 0.2 (b) | 3.07 ± 0.2 (a) | 0.029 * |
Parenchyma | 1.59 ± 0.3 | 1.67 ± 0.3 | 1.30 ± 0.3 | 2.30 ± 0.5 | 0.467 |
Xylem | 5.92 ± 0.8 | 5.51 ± 0.8 | 4.52 ± 0.6 | 5.59 ± 0.6 | 0.514 |
Paclobutrazol | |||||
Stem Structure | Control | P30 | P60 | P120 | p Value |
Collenchyma | 9.04 ± 1.0 (a) | 5.62 ± 1.0 (b) | 5.45 ± 1.0 (b) | 9.34 ± 1.0 (a) | 0.049 * |
Epidermis | 2.33 ± 0.3 | 2.36 ± 0.3 | 2.43 ± 0.3 | 2.75 ± 0.3 | 0.691 |
Parenchyma | 1.59 ± 0.2 | 1.71 ± 0.2 | 1.30 ± 0.1 | 1.44 ± 0.1 | 0.407 |
Xylem | 5.92 ± 1.0 | 6.62 ± 1.0 | 4.50 ± 0.8 | 4.53 ± 0.8 | 0.328 |
Indole-3-butyric acid | |||||
Stem Structure | Control | IBA 250 | IBA 500 | IBA 750 | p Value |
Collenchyma | 9.04 ± 3.4 | 8.91 ± 3.4 | 12.63 ± 3.4 | 9.56 ± 3.4 | 0.850 |
Epidermis | 2.33 ± 0.2 | 2.71 ± 0.2 | 2.81 ± 0.2 | 2.79 ± 0.2 | 0.507 |
Parenchyma | 1.59 ± 0.2 | 1.36 ± 0.2 | 1.69 ± 0.3 | 1.46 ± 0.2 | 0.677 |
Xylem | 5.92 ± 0.7 | 4.67 ± 0.7 | 6.07 ± 0.7 | 4.53 ± 0.6 | 0.352 |
Uniconazole | |||||
Stem Structure | Control | U10 | U20 | U30 | p Value |
Collenchyma | 9.04 ± 2.4 | 8.78 ± 2.4 | 7.86 ± 2.4 | 7.18 ± 2.4 | 0.938 |
Epidermis | 2.33 ± 0.2 | 2.73 ± 0.2 | 2.54 ± 0.2 | 2.12 ± 0.2 | 0.094 |
Parenchyma | 1.59 ± 0.2 | 1.05 ± 0.2 | 1.21 ± 0.2 | 1.30 ± 0.2 | 0.386 |
Xylem | 5.92 ± 0.7 | 5.45 ± 0.6 | 4.34 ± 0.6 | 4.52 ± 0.6 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bass, K.; Harvey, L.; Santy, A.; Bi, G.; Harvey, K. Effect of Plant Growth Regulators on Sweetpotato Stem Tissue Development and Structure. Int. J. Plant Biol. 2025, 16, 91. https://doi.org/10.3390/ijpb16030091
Bass K, Harvey L, Santy A, Bi G, Harvey K. Effect of Plant Growth Regulators on Sweetpotato Stem Tissue Development and Structure. International Journal of Plant Biology. 2025; 16(3):91. https://doi.org/10.3390/ijpb16030091
Chicago/Turabian StyleBass, Kerington, Lorin Harvey, Apphia Santy, Guihong Bi, and Kelsey Harvey. 2025. "Effect of Plant Growth Regulators on Sweetpotato Stem Tissue Development and Structure" International Journal of Plant Biology 16, no. 3: 91. https://doi.org/10.3390/ijpb16030091
APA StyleBass, K., Harvey, L., Santy, A., Bi, G., & Harvey, K. (2025). Effect of Plant Growth Regulators on Sweetpotato Stem Tissue Development and Structure. International Journal of Plant Biology, 16(3), 91. https://doi.org/10.3390/ijpb16030091