Clinical and Laboratory Manifestation of Gastrointestinal Involvement in MIS-C: A Single-Center Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
- Age under 18, fever > 38.0 °C for ≥24 h (or subjective fever lasting ≥24 h), laboratory-confirmed inflammation (assessed by elevated CRP, erythrocyte sedimentation rate (ESR), fibrinogen, procalcitonin, D-dimer, ferritin, LDH, IL-6, higher neutrophils, low lymphocytes, and low albumin) and multisystem (>2) organ involvement;
- Exclusion of other diagnoses;
- Confirmed recent or current infection with SARS-CoV-2 (RT-PCR, antigen, or serological tests) or epidemiological data for exposure to the virus four weeks ago.
2.2. Epidemiology and Clinical Methods
2.3. Laboratory Methods
- General laboratory evaluation
- -
- Liver—the laboratory signs of liver involvement were separately assessed by investigating the markers for hepatocellular injury (hepatocytolysis) (ALT and/or AST more than the ULN lab reference value), cholestasis (ALP, GGT, and/or total, direct bilirubin more than the ULN) and impaired synthetic liver function (albumin and total protein less than LLN, coagulation);
- -
- Pancreas—serum amylase and lipase levels. The pancreatic enzymes were analyzed in a small number of patients when clinically indicated.
- -
- Liver injury—ALT and/or AST over the ULN and ALP, GGT, and bilirubin over ULN.
- Serological and immunological tests
- Microbiological and virological tests
- Imaging tests
2.4. Statistical Methods and Analysis
2.5. Ethics
3. Results
3.1. Demographic and Epidemiological Characteristics
3.2. Digestive Symptoms
3.3. Other Findings in MIS-C Children
3.4. Imaging Phenotypes
3.4.1. Pancreas Involvement
3.4.2. Hepatosplenomegaly
3.4.3. Gallbladder Involvement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parri, N.; Magistà, A.M.; Marchetti, F.; Cantoni, B.; Arrighini, A.; Romanengo, M.; Felici, E.; Urbino, A.; Da Dalt, L.; Verdoni, L.; et al. Characteristic of COVID-19 Infection in Pediatric Patients: Early Findings from Two Italian Pediatric Research Networks. Eur. J. Pediatr. 2020, 179, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Du, R.-H.; Liang, L.-R.; Yang, C.-Q.; Wang, W.; Cao, T.-Z.; Li, M.; Guo, G.-Y.; Du, J.; Zheng, C.-L.; Zhu, Q.; et al. Predictors of Mortality for Patients with COVID-19 Pneumonia Caused by SARS-CoV-2: A Prospective Cohort Study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Jin, Z.; Tan, X.; Zhang, C.; Zou, C.; Zhang, W.; Ding, J.; Das, B.C.; Severinov, K.; Hitzeroth, I.I.; et al. Hyperbranched Poly(β-Amino Ester) Based Polyplex Nanopaticles for Delivery of CRISPR/Cas9 System and Treatment of HPV Infection Associated Cervical Cancer. J. Control. Release 2020, 321, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Lazova, S.; Lazova, S.; Alexandrova, T.; Gorelyova-Stefanova, N.; Atanasov, K.; Tzotcheva, I.; Velikova, T. Liver Involvement in Children with COVID-19 and Multisystem Inflammatory Syndrome: A Single-Center Bulgarian Observational Study. Microorganisms 2021, 9, 1958. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Snegarova, V.; Kukov, A.; Batselova, H.; Mihova, A.; Nakov, R. Gastrointestinal Mucosal Immunity and COVID-19. World J. Gastroenterol. 2021, 27, 5047–5059. [Google Scholar] [CrossRef]
- Qiu, H.; Wu, J.; Hong, L.; Luo, Y.; Song, Q.; Chen, D. Clinical and Epidemiological Features of 36 Children with Coronavirus Disease 2019 (COVID-19) in Zhejiang, China: An Observational Cohort Study. Lancet Infect. Dis. 2020, 20, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Su, L.; Zhang, Y.; Zhang, X.; Gai, Z.; Zhang, Z. Do Children Need a Longer Time to Shed SARS-CoV-2 in Stool than Adults? J. Microbiol. Immunol. Infect. 2020, 53, 373–376. [Google Scholar] [CrossRef]
- Xing, Y.-H.; Ni, W.; Wu, Q.; Li, W.-J.; Li, G.-J.; Wang, W.-D.; Tong, J.-N.; Song, X.-F.; Wong, G.W.-K.; Xing, Q.-S. Prolonged Viral Shedding in Feces of Pediatric Patients with Coronavirus Disease 2019. J. Microbiol. Immunol. Infect. 2020, 53, 473–480. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y.Y.; Qu, J.; Zhang, W.; Wang, Y.; Bao, S.; Li, Y.; et al. SARS-CoV-2 Infection in Children. N. Engl. J. Med. 2020, 382, 1663–1665. [Google Scholar] [CrossRef] [Green Version]
- Tagarro, A.; Epalza, C.; Santos, M.; Sanz-Santaeufemia, F.J.; Otheo, E.; Moraleda, C.; Calvo, C. Screening and Severity of Coronavirus Disease 2019 (COVID-19) in Children in Madrid, Spain. JAMA Pediatr. 2020, 175, 316. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://emergency.cdc.gov/han/2020/han00432.asp (accessed on 10 November 2022).
- Paediatric Multisystem Inflammatory Syndrome Temporally Associated with COVID-19 (PIMS)—Guidance for Clinicians. Available online: https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims-guidance (accessed on 1 November 2022).
- Centers for Disease Control and Prevention. Multisystem Inflammatory Syndrome in Children (MIS-C) 2020. Available online: https://www.cdc.gov/mis-c/about.html (accessed on 10 November 2022).
- World Health Organization. Multisystem Inflammatory Syndrome in Children and Adolescents with COVID-19. 2020. Available online: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 10 November 2022).
- Lazova, S.; Gerenska, D.; Slabakova, Y.; Velikova, T. Immunological Features of the Multisystem Inflammatory Syndrome Associated with SARS-CoV-2 in Children. Am. J. Clin. Exp. Immunol. 2022, 11, 64–71. [Google Scholar] [PubMed]
- Ilieva, E.; Kostadinova, V.; Tzotcheva, I.; Rimpova, N.; Paskaleva, Y.; Lazova, S. Abdominal and Thoracic Imaging Features in Children with MIS-C. Gastroenterol. Insights 2022, 13, 313–325. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Case Definition for MIS-C. 2020. Available online: https://www.cdc.gov/mis-c/hcp/ (accessed on 10 November 2022).
- Giannattasio, A.; Orlando, F.; D’Anna, C.; Muzzica, S.; Angrisani, F.; Acierno, S.; Paciello, F.; Savoia, F.; Tardi, M.; Mauro, A.; et al. Distinctive Phenotype of Multisystem Inflammatory Syndrome in Children Associated with SARS-CoV-2 According to Patients’ Age: A Monocentric Experience. Children 2022, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Kliegman, R. Nelson Textbook of Pediatrics, 21st ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
- PICS Statement Increased Number of Reported Cases of Novel Presentation of Multi-System Inflammatory Disease. Paediatric Intensive Care Society: Paediatric Intensive Care Soci-Ety. 2020. Available online: https://picsociety.uk/wp-content/uploads/2020/04/pics-statement-re-n (accessed on 1 November 2022).
- Schroeder, A.R.; Wilson, K.M.; Ralston, S.L. COVID-19 and Kawasaki Disease: Finding the Signal in the Noise. Hosp. Pediatr. 2020, 10, e1–e3. [Google Scholar] [CrossRef]
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory Shock in Children during COVID-19 Pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef]
- Belhadjer, Z.; Méot, M.; Bajolle, F.; Khraiche, D.; Legendre, A.; Abakka, S.; Auriau, J.; Grimaud, M.; Oualha, M.; Beghetti, M.; et al. Acute Heart Failure in Multisystem Inflammatory Syndrome in Children in the Context of Global SARS-CoV-2 Pandemic. Circulation 2020, 142, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Calò Carducci, F.I.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in Children and Adolescents in Europe: A Multinational, Multicentre Cohort Study. Lancet Child Adolesc. Health 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Miller, J.; Cantor, A.; Zachariah, P.; Ahn, D.; Martinez, M.; Margolis, K.G. Gastrointestinal Symptoms as a Major Presentation Component of a Novel Multisystem Inflammatory Syndrome in Children That Is Related to Coronavirus Disease 2019: A Single Center Experience of 44 Cases. Gastroenterology 2020, 159, 1571–1574.e2. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/mis-c/cases (accessed on 10 November 2022).
- McArdle, A.J.; Vito, O.; Patel, H.; Seaby, E.G.; Shah, P.; Wilson, C.; Broderick, C.; Nijman, R.; Tremoulet, A.H.; Munblit, D.; et al. Treatment of Multisystem Inflammatory Syndrome in Children. N. Engl. J. Med. 2021, 385, 11–22. [Google Scholar] [CrossRef]
- Payne, A.B.; Gilani, Z.; Godfred-Cato, S.; Belay, E.D.; Feldstein, L.R.; Patel, M.M.; Randolph, A.G.; Newhams, M.; Thomas, D.; Magleby, R.; et al. Incidence of Multisystem Inflammatory Syndrome in Children Among US Persons Infected with SARS-CoV-2. JAMA Netw. Open 2021, 4, e2116420. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.Y.; Godfred-Cato, S.E.; Oster, M.E.; Chow, E.J.; Koumans, E.H.; Bryant, B.; Leung, J.W.; Belay, E.D. Multisystem Inflammatory Syndrome in Children Associated with Severe Acute Respiratory Syndrome Coronavirus 2: A Systematic Review. J. Pediatr. 2020, 226, 45–54.e1. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/mis/mis-a/hcp.html (accessed on 10 November 2022).
- Available online: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 1 November 2022).
- Valitutti, F.; Verde, A.; Pepe, A.; Sorrentino, E.; Veneruso, D.; Ranucci, G.; Orlando, F.; Mastrominico, A.; Grella, M.G.; Mandato, C. Multisystem Inflammatory Syndrome in Children. An Emerging Clinical Challenge for Pediatric Surgeons in the COVID 19 Era. J. Pediatr. Surg. Case Rep. 2021, 69, 101838. [Google Scholar] [CrossRef] [PubMed]
- Giannattasio, A.; Maglione, M.; D’Anna, C.; Muzzica, S.; Pappacoda, S.; Lenta, S.; Di Mita, O.; Ranucci, G.; Mandato, C.; Tipo, V. Liver and Pancreatic Involvement in Children with Multisystem Inflammatory Syndrome Related to SARS-CoV-2: A Monocentric Study. Children 2022, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, K.I.; Targher, G.; Byrne, C.D.; Zheng, M. Abnormal Liver Enzymes in Children and Infants with COVID-19: A Narrative Review of Case-series Studies. Pediatr. Obes. 2020, 15, e12723. [Google Scholar] [CrossRef]
- Perez, A.; Cantor, A.; Rudolph, B.; Miller, J.; Kogan-Liberman, D.; Gao, Q.; Da Silva, B.; Margolis, K.G.; Ovchinsky, N.; Martinez, M. Liver Involvement in Children with SARS-CoV-2 Infection: Two Distinct Clinical Phenotypes Caused by the Same Virus. Liver Int. 2021, 41, 2068–2075. [Google Scholar] [CrossRef]
- Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013, 27, 669–684. [Google Scholar]
- Marino, L.; Criniti, A.; Guida, S.; Bucci, T.; Ballesio, L.; Suppa, M.; Galardo, G.; Vacca, A.; Santulli, M.; Angeloni, A.; et al. Interleukin 18 and IL-18 BP response to SARS-CoV-2 virus infection. Clin. Exp. Med. 2022. pub ahead of print. [Google Scholar] [CrossRef]
- Eskelinen, M.; Saimanen, I.; Selander, T.; Holopainen, A.; Aspinen, S.; Hämäläinen, E.; Eskelinen, M. Interleukin-18 (IL-18) Cytokine Serum Concentrations Correlate with Pain Scores and the Number of Analgesic Doses Following Surgery. Anticancer Res. 2022, 42, 5521–5526. [Google Scholar] [CrossRef]
- Nasser, S.M.T.; Rana, A.A.; Doffinger, R.; Kafizas, A.; Khan, T.A.; Nasser, S. Elevated free interleukin-18 associated with severity and mortality in prospective cohort study of 206 hospitalised COVID-19 patients. Intensive Care Med. Exp. 2023, 11, 9. [Google Scholar] [CrossRef]
- Alqahtani, S.A.; Schattenberg, J.M. Liver Injury in COVID-19: The Current Evidence. United Eur. Gastroenterol. J. 2020, 8, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Vissers, R.J.; Abu-Laban, R.B.; McHugh, D.F. Amylase and Lipase in the Emergency Department Evaluation of Acute Pancreatitis. J. Emerg. Med. 1999, 17, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- de-Madaria, E.; Siau, K.; Cárdenas-Jaén, K. Increased Amylase and Lipase in Patients with COVID-19 Pneumonia: Don’t Blame the Pancreas Just Yet! Gastroenterology 2021, 160, 1871. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, H.; Fan, J.; Zhang, Y.; Wang, H.; Zhao, Q. Pancreatic Injury Patterns in Patients with Coronavirus Disease 19 Pneumonia. Gastroenterology 2020, 159, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, A.R.; Cortese, M.M.; Taylor, A.W.; Broder, K.R.; Oster, M.E.; Wong, J.M.; Guh, A.Y.; McCormick, D.W.; Kamidani, S.; Schlaudecker, E.P.; et al. Reported Cases of Multisystem Inflammatory Syndrome in Children Aged 12–20 Years in the USA Who Received a COVID-19 Vaccine, December, 2020, through August, 2021: A Surveillance Investigation. Lancet Child Adolesc. Health 2022, 6, 303–312. [Google Scholar] [CrossRef] [PubMed]
Laboratory Test | Main Group N = 51 Mean ± SD and/or Number of Patients Tested (%) | |
---|---|---|
Mean age | 8.82 ± 4.16 | |
Number of male patients | 37 (72.5) | |
Positive epidemiology history (contact with COVID-19) * | 15 (29.4) | |
Positive history of COVID-19 symptoms * | 21 (41.1%) | |
Comorbidities | 14 (27.5%) | |
Digestive symptoms | Vomiting | 26 (51%) |
Diarrhea | 23 (45%) | |
Any | 37 (72.5%) | |
Absolute leucocytes count | 13.18 ± 6.84 (51) | |
Absolute lymphocyte count | 1.46 ± 1.20 (51) | |
Absolute neutrophil count | 10.81 ± 5.88 (51) | |
Neutrophile percentage | 82.58 ± 9.29 (51) | |
Platelet count | 259.74 ± 153.29 (51) | |
CRP initial, mg/dL | 19.91 ± 12.70 (51) | |
CRP follow-up, mg/dL | 11.77 ± 7.69 (51) | |
PCT, ng/mL | 8.48 ± 13.02 (51) | |
Ferritin, ng/mL | 552.02 ± 370.77 (33) | |
IL-6, ng/mL | 117.52 ± 138.80 (32) | |
D-dimer, ng/mL | 2234.82 ± 1962.17 (43) | |
Fibrinogen, g/L | 5.26 ± 1.65 (44) | |
ASAT, IU/mL | 89.00 ± 173.44 (46) | |
ALAT, IU/mL | 67.13 ± 99.66 (46) | |
GGT, IU/mL | 67.78 ± 83.01 (37) | |
ALP, IU/mL | 132.16 ± 57.67 (31) | |
LDH, U/L | 359.50 ± 187.03 (45) | |
Total bilirubin, umol/L | 17.30 ± 22.24 (41) | |
Direct bilirubin, umol/L | 8.04 ± 14.83 (41) | |
Total protein, g/L | 60.63 ± 9.89 (41) | |
Albumin, g/L | 33.93 ± 7.32 (49) | |
Amylase, U/L | 47.88 ± 26.64 (22) | |
Lipase, U/L | 65.56 ± 98.74 (12) | |
Abdominal ultrasound (US) at admission (number of patients tested) | ||
US mesenteric lymphadenitis | 22 (47) | |
US ascites | 32 (47) | |
US gallbladder | 5 (49) | |
US enteritis/enterocolitis | 3 (44) |
Digestive Symptoms | Children ≤ 5 Years Old N = 11 | Children > 5 Years Old N = 40 | All Children N = 51 | p |
---|---|---|---|---|
Diarrhea and/or vomiting, N (%) | 7 (63.63%) | 30 (75%) | 37 (72.54%) | n.s. |
Abdominal pain, N (%) | 8 (72.72%) | 36 (90%) | 44 (86.20%) | n.s. |
Acute abdomen, N (%) | 1 (9.09%) | 11 (27.5%) | 12 (23.53%) | 0.09 |
Diarrhea, N (%) | 6 (54.54%) | 17 (42.5%) | 23 (45.1%) | n.s. |
Vomiting, N (%) | 5 (45.45%) | 21 (52.5%) | 26 (50.98%) | n.s. |
Icterus, N (%) | 0 (0%) | 3 (7.5%) | 3 (5.88%) | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazova, S.; Tomov, L.; Miteva, D.; Tzotcheva, I.; Priftis, S.; Velikova, T. Clinical and Laboratory Manifestation of Gastrointestinal Involvement in MIS-C: A Single-Center Observational Study. Gastroenterol. Insights 2023, 14, 236-248. https://doi.org/10.3390/gastroent14020017
Lazova S, Tomov L, Miteva D, Tzotcheva I, Priftis S, Velikova T. Clinical and Laboratory Manifestation of Gastrointestinal Involvement in MIS-C: A Single-Center Observational Study. Gastroenterology Insights. 2023; 14(2):236-248. https://doi.org/10.3390/gastroent14020017
Chicago/Turabian StyleLazova, Snezhina, Latchezar Tomov, Dimitrina Miteva, Iren Tzotcheva, Stamatios Priftis, and Tsvetelina Velikova. 2023. "Clinical and Laboratory Manifestation of Gastrointestinal Involvement in MIS-C: A Single-Center Observational Study" Gastroenterology Insights 14, no. 2: 236-248. https://doi.org/10.3390/gastroent14020017
APA StyleLazova, S., Tomov, L., Miteva, D., Tzotcheva, I., Priftis, S., & Velikova, T. (2023). Clinical and Laboratory Manifestation of Gastrointestinal Involvement in MIS-C: A Single-Center Observational Study. Gastroenterology Insights, 14(2), 236-248. https://doi.org/10.3390/gastroent14020017