Transcranial Stimulation for the Treatment of Stimulant Use Disorder
Abstract
:1. Introduction
1.1. Cocaine
1.2. Methamphetamine
2. Current Treatment of StUD
2.1. Current Behavioral Interventions for StUD
2.2. Pharmaceutical Interventions Being Studied
3. Neuromodulation in Psychiatry
3.1. Transcranial Magnetic Stimulation
3.2. Transcranial Magnetic Stimulation for Substance Use Disorders
4. Clinical Studies
4.1. Dorsal Lateral Prefrontal Cortex (DLPFC)
4.2. Prefrontal Cortex (PFC)
4.3. Help with Other Symptoms of Note
4.4. Cocaine and Neuromodulation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- John, W.S.; Wu, L.-T. Trends and correlates of cocaine use and cocaine use disorder in the United States from 2011 to 2015. Drug Alcohol Depend. 2017, 180, 376–384. [Google Scholar] [CrossRef]
- Courtney, K.E.; Ray, L.A. Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend. 2014, 143, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Moore, T.J.; Wirtz, P.W.; Kruszewski, S.P.; Alexander, G.C. Changes in medical use of central nervous system stimulants among US adults, 2013 and 2018: A cross-sectional study. BMJ Open 2021, 11, e048528. [Google Scholar] [CrossRef]
- Wilens, T.E.; Adler, L.A.; Adams, J.; Sgambati, S.; Rotrosen, J.; Sawtelle, R.; Utzinger, L.; Fusillo, S. Misuse and Diversion of Stimulants Prescribed for ADHD: A Systematic Review of the Literature. J. Am. Acad. Child Adolesc. Psychiatry 2008, 47, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Drug Abuse Warning Network. National Estimates of Drug-Related Emergency Department Visits. 100. 2011. Available online: https://www.samhsa.gov/data/sites/default/files/DAWN2k11ED/DAWN2k11ED/DAWN2k11ED.pdf (accessed on 1 October 2022).
- Henry, P.K.; Murnane, K.S.; Votaw, J.R.; Howell, L.L. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav. 2010, 4, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, M.R.A.; Meijler, M.M.; Janda, K.D. Cocaine pharmacology and current pharmacotherapies for its abuse. Bioorg. Med. Chem. 2004, 12, 5019–5030. [Google Scholar] [CrossRef] [PubMed]
- BEbaik, J.-H. Dopamine Signaling in reward-related behaviors. Front. Neural Circuits 2013, 7, 152. [Google Scholar]
- Kalivas, P.W.; Volkow, N.D. The Neural Basis of Addiction: A Pathology of Motivation and Choice. Am. J. Psychiatry 2005, 162, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Dominic, P.; Ahmad, J.; Awwab, H.; Bhuiyan, S.; Kevil, C.G.; Goeders, N.E.; Murnane, K.S.; Patterson, J.C.; Sandau, K.E.; Gopinathannair, R.; et al. Stimulant Drugs of Abuse and Cardiac Arrhythmias. Circ. Arrhythmia Electrophysiol. 2022, 15, e010273. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Kaufman, S.E.; Green, K.M.; Provenzano, D.A.; Lawson, J.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Methamphetamine Use: A Narrative Review of Adverse Effects and Related Toxicities. Heal. Psychol. Res. 2022, 10, 38161. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, H.J.; Lim, B.; Wylegala, A.; Toborek, M. Methamphetamine-induced Occludin Endocytosis Is Mediated by the Arp2/3 Complex-regulated Actin Rearrangement. J. Biol. Chem. 2013, 288, 33324–33334. [Google Scholar] [CrossRef] [Green Version]
- Murnane, K.S.; Andersen, M.L.; Rice, K.C.; Howell, L.L. Selective serotonin 2A receptor antagonism attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. J. Sleep Res. 2013, 22, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusyniak, D.E. Neurologic Manifestations of Chronic Methamphetamine Abuse. Neurol. Clin. 2011, 29, 641–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murnane, K.S.; Perrine, S.A.; Finton, B.J.; Galloway, M.P.; Howell, L.L.; Fantegrossi, W.E. Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: Correlations between behavior and neurochemistry. Psychopharmacology 2011, 220, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.L.; Diaz, M.P.; Murnane, K.S.; Howell, L.L. Effects of methamphetamine self-administration on actigraphy-based sleep parameters in rhesus monkeys. Psychopharmacology 2012, 227, 101–107. [Google Scholar] [CrossRef] [Green Version]
- McGregor, C.; Srisurapanont, M.; Jittiwutikarn, J.; Laobhripatr, S.; Wongtan, T.; White, J.M. The nature, time course and severity of methamphetamine withdrawal. Addiction 2005, 100, 1320–1329. [Google Scholar] [CrossRef]
- Abdullah, C.S.; Aishwarya, R.; Alam, S.; Morshed, M.; Remex, N.S.; Nitu, S.; Kolluru, G.K.; Traylor, J.; Miriyala, S.; Panchatcharam, M.; et al. Methamphetamine induces cardiomyopathy by Sigmar1 inhibition-dependent impairment of mitochondrial dynamics and function. Commun. Biol. 2020, 3, 682. [Google Scholar] [CrossRef]
- Batra, V.; Murnane, K.S.; Knox, B.; Edinoff, A.N.; Ghaffar, Y.; Nussdorf, L.; Petersen, M.; Kaufman, S.E.; Jiwani, S.; Casey, C.A.; et al. Early onset cardiovascular disease related to methamphetamine use is most striking in individuals under 30: A retrospective chart review. Addict. Behav. Rep. 2022, 15, 100435. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Walker, R.; Ling, W.; Cruz, A.D.; Sharma, G.; Carmody, T.; Ghitza, U.E.; Wahle, A.; Kim, M.; Shores-Wilson, K.; et al. Bupropion and Naltrexone in Methamphetamine Use Disorder. N. Engl. J. Med. 2021, 384, 140–153. [Google Scholar] [CrossRef]
- Howell, L.L.; Murnane, K.S. Nonhuman Primate Neuroimaging and the Neurobiology of Psychostimulant Addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Murnane, K.S.; Howell, L.L. Neuroimaging and drug taking in primates. Psychopharmacology 2011, 216, 153–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edinoff, A.N.; Thompson, E.; Merriman, C.E.; Alvarez, M.R.; Alpaugh, E.S.; Cornett, E.M.; Murnane, K.S.; Kozinn, R.L.; Shah-Bruce, M.; Kaye, A.M.; et al. Oxytocin, a Novel Treatment for Methamphetamine Use Disorder. Neurol. Int. 2022, 14, 186–198. [Google Scholar] [CrossRef]
- Bentzley, B.S.; Han, S.S.; Neuner, S.; Humphreys, K.; Kampman, K.M.; Halpern, C.H. Comparison of Treatments for Cocaine Use Disorder Among Adults: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2021, 4, e218049. [Google Scholar] [CrossRef] [PubMed]
- Chudzynski, J.; Roll, J.M.; McPherson, S.; Cameron, J.M.; Howell, D.N. Reinforcement Schedule Effects on Long-Term Behavior Change. Psychol. Rec. 2015, 65, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contingency Management for the Treatment of Methamphetamine Use Disorder: A Systematic Review|Elsevier Enhanced Reader [Internet] [Cited 31 October 2022]. Available online: https://reader.elsevier.com/reader/sd/pii/S0376871620304725?token=19665E8731AC612A415D0438BD78607FE0B919DFDF2BB9012118B1B589C8C7AB18AA735F2B03B24E8CEBC3656940F95B&originRegion=us-east-1&originCreation=20221031235458 (accessed on 31 October 2022).
- Harada, T.; Tsutomi, H.; Mori, R.; Wilson, D.B. Cognitive-Behavioural Treatment for Amphetamine-Type Stimulants (ATS)-Use Disorders. Cochrane Database Syst Rev [Internet]. [Cited 31 October 2022]; (12). 2018. Available online: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD011315.pub2/full (accessed on 19 November 2022).
- Jilani, T.N.; Gibbons, J.R.; Faizy, R.M.; Saadabadi, A. Mirtazapine [Internet]. StatPearls [Internet]. StatPearls Publishing; 2022 [Cited 19 November 2022]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519059/ (accessed on 19 November 2022).
- Coffin, P.O.; Santos, G.M.; Hern, J.; Vittinghoff, E.; Walker, J.E.; Matheson, T.; Santos, D.; Colfax, G.; Batki, S.L. Effects of Mirtazapine for Methamphetamine Use Disorder Among Cisgender Men and Transgender Women Who Have Sex With Men: A Placebo-Controlled Randomized Clinical Trial. JAMA Psychiatry 2020, 77, 246–255. [Google Scholar] [CrossRef]
- Naji, L.; Dennis, B.; Rosic, T.; Wiercioch, W.; Paul, J.; Worster, A.; Thabane, L.; Samaan, Z. Mirtazapine for the treatment of amphetamine and methamphetamine use disorder: A systematic review and meta-analysis. Drug Alcohol Depend. 2022, 232, 109295. [Google Scholar] [CrossRef]
- CChan, B.; Kondo, K.; Freeman, M.; Ayers, C.; Montgomery, J.; Kansagara, D. Pharmacotherapy for Cocaine Use Disorder—A Systematic Review and Meta-analysis. J. Gen. Intern. Med. 2019, 34, 2858–2873. [Google Scholar] [CrossRef]
- Kampman, K.M.; Pettinati, H.; Lynch, K.G.; Dackis, C.; Sparkman, T.; Weigley, C.; O’Brien, C.P. A pilot trial of topiramate for the treatment of cocaine dependence. Drug Alcohol Depend. 2004, 75, 233–240. [Google Scholar] [CrossRef]
- Lisanby, S.H.; Kinnunen, L.H.; Crupain, M.J. Applications of TMS to therapy in psychiatry. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2002, 19, 344–360. [Google Scholar] [CrossRef] [Green Version]
- Cocchi, L.; Zalesky, A. Personalized Transcranial Magnetic Stimulation in Psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 731–741. [Google Scholar] [CrossRef]
- Zangen, A.; Moshe, H.; Martinez, D.; Barnea-Ygael, N.; Vapnik, T.; Bystritsky, A.; Duffy, W.; Toder, D.; Casuto, L.; Grosz, M.L.; et al. Repetitive transcranial magnetic stimulation for smoking cessation: A pivotal multicenter double-blind randomized controlled trial. World Psychiatry 2021, 20, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ward, H.B. Transcranial magnetic stimulation and neuroimaging for cocaine use disorder: Review and future directions. Am. J. Drug Alcohol Abus. 2020, 47, 144–153. [Google Scholar] [CrossRef]
- Steele, V.R.; Maxwell, A.M. Treating cocaine and opioid use disorder with transcranial magnetic stimulation: A path forward. Pharmacol. Biochem. Behav. 2021, 209, 173240. [Google Scholar] [CrossRef]
- Zhang, J.J.Q.; Fong, K.N.K.; Ouyang, R.; Siu, A.M.H.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: A systematic review and meta-analysis. Addiction 2019, 114, 2137–2149. [Google Scholar] [CrossRef] [PubMed]
- Murnane, K.S.; Gopinath, K.S.; Maltbie, E.; Daunais, J.B.; Telesford, Q.K.; Howell, L.L. Functional connectivity in frontal-striatal brain networks and cocaine self-administration in female rhesus monkeys. Psychopharmacology 2014, 232, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Belgers, M.; Van Eijndhoven, P.; Markus, W.; Schene, A.H.; Schellekens, A. rTMS Reduces Craving and Alcohol Use in Patients with Alcohol Use Disorder: Results of a Randomized, Sham-Controlled Clinical Trial. J. Clin. Med. 2022, 11, 951. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, Y.; Cao, X.; Li, Y.; Chen, Y.; Yang, W.; Yuan, T.-F. Either at left or right, both high and low frequency rTMS of dorsolateral prefrontal cortex decreases cue induced craving for methamphetamine. Am. J. Addict. 2017, 26, 776–779. [Google Scholar] [CrossRef]
- Chen, T.; Su, H.; Li, R.; Jiang, H.; Li, X.; Wu, Q.; Tan, H.; Zhang, J.; Zhong, N.; Du, J.; et al. A transcranial magnetic stimulation protocol for decreasing the craving of methamphetamine-dependent patients. STAR Protoc. 2021, 2, 100944. [Google Scholar] [CrossRef]
- Gershon, A.A.; Dannon, P.N.; Grunhaus, L. Transcranial magnetic stimulation in the treatment of depression. Am. J. Psychiatry 2003, 160, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardone, R.; Sebastianelli, L.; Versace, V.; Brigo, F.; Golaszewski, S.; Pucks-Faes, E.; Saltuari, L.; Trinka, E. Effects of repetitive transcranial magnetic stimulation in subjects with sleep disorders. Sleep Med. 2020, 71, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Y.; Shen, Y.; Liu, X.; Yuan, T.-F. Gender does not matter: Add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 92, 70–75. [Google Scholar] [CrossRef]
- Liang, Q.; Lin, J.; Yang, J.; Li, X.; Chen, Y.; Meng, X.; Yuan, J. Intervention Effect of Repetitive TMS on Behavioral Adjustment After Error Commission in Long-Term Methamphetamine Addicts: Evidence From a Two-Choice Oddball Task. Neurosci. Bull. 2018, 34, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, Y.; Liu, T.; Voon, V.; Yuan, T.-F. Twice-Daily Theta Burst Stimulation of the Dorsolateral Prefrontal Cortex Reduces Methamphetamine Craving: A Pilot Study. Front. Neurosci. 2020, 14, 208. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.W. Laterality of Brain Activation for Risk Factors of Addiction. Curr. Drug Abus. Rev. 2016, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Cao, X.; Tan, T.; Shan, C.; Wang, Y.; Pan, J.; He, H.; Yuan, T.-F. 10-Hz Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex Reduces Heroin Cue Craving in Long-Term Addicts. Biol. Psychiatry 2016, 80, e13–e14. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, T.; Wang, F.; Li, H.; Gong, D.; Zhang, R.; Jiang, Y.; Tian, Y.; Guo, D.; Yao, D.; et al. Relationships between the resting-state network and the P3: Evidence from a scalp EEG study. Sci. Rep. 2015, 5, 15129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Liu, W.; Liang, Q.; Cao, X.; Lucas, M.V.; Yuan, T.F. Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Impulse Inhibition in Abstinent Patients With Methamphetamine Addiction: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Hartwell, K.J.; Owens, M.; LeMatty, T.; Borckardt, J.J.; Hanlon, C.A.; Brady, K.T.; George, M.S. Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Reduces Nicotine Cue Craving. Biol. Psychiatry 2013, 73, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Bolloni, C.; Panella, R.; Pedetti, M.; Frascella, A.G.; Gambelunghe, C.; Piccoli, T.; Maniaci, G.; Brancato, A.; Cannizzaro, C.; Diana, M. Bilateral Transcranial Magnetic Stimulation of the Prefrontal Cortex Reduces Cocaine Intake: A Pilot Study. Front. Psychiatry 2016, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Liu, X.; Li, H.; Yu, L.; Shen, M.; Lou, Y.; Xie, S.; Chen, J.; Zhang, R.; Yuan, T.-F. Chronic repetitive transcranial magnetic stimulation (rTMS) on sleeping quality and mood status in drug dependent male inpatients during abstinence. Sleep Med. 2019, 58, 7–12. [Google Scholar] [CrossRef]
- Hanlon, C.A.; DeVries, W.; Dowdle, L.T.; West, J.A.; Siekman, B.; Li, X.; George, M.S. A comprehensive study of sensorimotor cortex excitability in chronic cocaine users: Integrating TMS and functional MRI data. Drug Alcohol Depend. 2015, 157, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney-Ramos, T.E.; Lench, D.H.; Hoffman, M.; Correia, B.; Dowdle, L.T.; Hanlon, C.A. Gray and white matter integrity influence TMS signal propagation: A multimodal evaluation in cocaine-dependent individuals. Sci. Rep. 2018, 8, 3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strafella, A.P.; Paus, T.; Barrett, J.; Dagher, A. Repetitive Transcranial Magnetic Stimulation of the Human Prefrontal Cortex Induces Dopamine Release in the Caudate Nucleus. J. Neurosci. 2001, 21, RC157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvaz, M.A.; Moeller, S.J.; Uquillas, F.D.; Pflumm, A.; Maloney, T.; Alia-Klein, N.; Goldstein, R.Z. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: A longitudinal study. Addict. Biol. 2016, 22, 1391–1401. [Google Scholar] [CrossRef]
- Steele, V.; Maxwell, A.M.; Ross, T.J.; Stein, E.A.; Salmeron, B.J. Accelerated Intermittent Theta-Burst Stimulation as a Treatment for Cocaine Use Disorder: A Proof-of-Concept Study. Front. Neurosci. 2019, 13, 1147. [Google Scholar] [CrossRef]
- Rotolo, M.; Pacifici, R.; Pellegrini, M.; Cardullo, S.; Pérez, L.; Cuppone, D.; Gallimberti, L.; Madeo, G. Hair Testing for Classic Drugs of Abuse to Monitor Cocaine Use Disorder in Patients Following Transcranial Magnetic Stimulation Protocol Treatment. Biology 2021, 10, 403. [Google Scholar] [CrossRef]
- Madeo, G.; Terraneo, A.; Cardullo, S.; Pérez, L.J.G.; Cellini, N.; Sarlo, M.; Bonci, A.; Gallimberti, L. Long-Term Outcome of Repetitive Transcranial Magnetic Stimulation in a Large Cohort of Patients With Cocaine-Use Disorder: An Observational Study. Front. Psychiatry 2020, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Ronsley, C.; Nolan, S.; Knight, R.; Hayashi, K.; Klimas, J.; Walley, A.; Wood, E.; Fairbairn, N. Treatment of stimulant use disorder: A systematic review of reviews. PLoS ONE 2020, 15, e0234809. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edinoff, A.N.; Sall, S.; Roberts, T.D.; Tomlinson, H.H.; Soileau, L.G., III; Jackson, E.D.; Murnane, K.S.; Wenger, D.M.; Cornett, E.M.; Toms, J.; et al. Transcranial Stimulation for the Treatment of Stimulant Use Disorder. Neurol. Int. 2023, 15, 325-338. https://doi.org/10.3390/neurolint15010021
Edinoff AN, Sall S, Roberts TD, Tomlinson HH, Soileau LG III, Jackson ED, Murnane KS, Wenger DM, Cornett EM, Toms J, et al. Transcranial Stimulation for the Treatment of Stimulant Use Disorder. Neurology International. 2023; 15(1):325-338. https://doi.org/10.3390/neurolint15010021
Chicago/Turabian StyleEdinoff, Amber N., Saveen Sall, T. Dean Roberts, Henry H. Tomlinson, Lenise G. Soileau, III, Eric D. Jackson, Kevin S. Murnane, Danielle M. Wenger, Elyse M. Cornett, Jaime Toms, and et al. 2023. "Transcranial Stimulation for the Treatment of Stimulant Use Disorder" Neurology International 15, no. 1: 325-338. https://doi.org/10.3390/neurolint15010021
APA StyleEdinoff, A. N., Sall, S., Roberts, T. D., Tomlinson, H. H., Soileau, L. G., III, Jackson, E. D., Murnane, K. S., Wenger, D. M., Cornett, E. M., Toms, J., Kumbhare, D., Kaye, A. M., & Kaye, A. D. (2023). Transcranial Stimulation for the Treatment of Stimulant Use Disorder. Neurology International, 15(1), 325-338. https://doi.org/10.3390/neurolint15010021