Abstract
For hybrid electric vehicle, it is necessary to control power distribution among multiple power sources to improve fuel economy performance of vehicle. In this paper, power management strategy of hybrid electric vehicle using Dynamic programming is studied. Deterministic dynamic programming could present outstanding fuel economy, while its application as real time control of vehicle is limited. Thus, different kinds of power management strategy using dynamic programming are studied. Stochastic dynamic programming, artificial neural networks and rule-based power management strategy using results from dynamic programming are studied. Simulations using parallel type hybrid electric vehicle model are conducted. Simulation results including fuel economy performance on diverse driving cycles are compared and analysed.