Abstract
Urban bus operations under signalized traffic conditions are characterized by frequent stop-and-start behaviors which significantly degrade fuel economy, especially for fuel cell buses (FCB). In this paper, a collaborative optimization method is proposed that combines speed planning and energy management for FCB in this situation. The method calculates the target speed of FCB using traffic light phase information and the remaining signal time. With an intelligent driving model, the vehicle can adjust its speed in advance when approaching intersections so it can pass through intersections without stopping. At the same time, a learning-based energy management strategy is used to reasonably share power between the fuel cell and the battery. The results indicate that the method proposed in this paper reduces hydrogen consumption by approximately 11.3% compared to the standard method.