Next Article in Journal
Two-Factor Authentication Scheme for Mobile Money: A Review of Threat Models and Countermeasures
Previous Article in Journal
On Frequency Estimation and Detection of Heavy Hitters in Data Streams
Open AccessArticle

Expectations and limitations of Cyber-Physical Systems (CPS) for Advanced Manufacturing: A View from the Grinding Industry

1
Faculty of Engineering Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Bizkaia, Spain
2
IDEKO, Arriaga Kalea, 2, 20870 Elgoibar, Gipuzkoa, Spain
*
Author to whom correspondence should be addressed.
Future Internet 2020, 12(9), 159; https://doi.org/10.3390/fi12090159
Received: 14 July 2020 / Revised: 8 September 2020 / Accepted: 19 September 2020 / Published: 22 September 2020
Grinding is a critical technology in the manufacturing of high added-value precision parts, accounting for approximately 20–25% of all machining costs in the industrialized world. It is a commonly used process in the finishing of parts in numerous key industrial sectors such as transport (including the aeronautical, automotive and railway industries), and energy or biomedical industries. As in the case of many other manufacturing technologies, grinding relies heavily on the experience and knowledge of the operatives. For this reason, considerable efforts have been devoted to generating a systematic and sustainable approach that reduces and eventually eliminates costly trial-and-error strategies. The main contribution of this work is that, for the first time, a complete digital twin (DT) for the grinding industry is presented. The required flow of information between numerical simulations, advanced mechanical testing and industrial practice has been defined, thus producing a virtual mirror of the real process. The structure of the DT comprises four layers, which integrate: (1) scientific knowledge of the process (advanced process modeling and numerical simulation); (2) characterization of materials through specialized mechanical testing; (3) advanced sensing techniques, to provide feedback for process models; and (4) knowledge integration in a configurable open-source industrial tool. To this end, intensive collaboration between all the involved agents (from university to industry) is essential. One of the most remarkable results is the development of new and more realistic models for predicting wheel wear, which currently can only be known in industry through costly trial-and-error strategies. Also, current work is focused on the development of an intelligent grinding wheel, which will provide on-line information about process variables such as temperature and forces. This is a critical issue in the advance towards a zero-defect grinding process. View Full-Text
Keywords: cyber-physical systems; digital twin; advanced manufacturing; grinding process; grinding wheel cyber-physical systems; digital twin; advanced manufacturing; grinding process; grinding wheel
Show Figures

Figure 1

MDPI and ACS Style

Pombo, I.; Godino, L.; Sánchez, J.A.; Lizarralde, R. Expectations and limitations of Cyber-Physical Systems (CPS) for Advanced Manufacturing: A View from the Grinding Industry. Future Internet 2020, 12, 159.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop