#
Intransitiveness: From Games to Random Walks^{ †}

^{1}

^{2}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Transitivity

## 3. Intransitiveness in Markov Chains

## 4. Applications

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Penney, W. Problem 95:Penney-ante. J. Recreat. Math.
**1969**, 2, 241. [Google Scholar] - Cencetti, G.; Bagnoli, F.; Di Patti, F.; Fanelli, D. The second will be first: Competition on directed networks. Sci. Rep.
**2016**, 6, 27116. [Google Scholar] [CrossRef] [PubMed] - Baldi, A.; Cencetti, G.; Fanelli, D.; Bagnoli, F. Intransitiveness in Games and Random Walks. In Lecture Notes in Computer Science, Proceedings of the 6th International Conference on Internet Science, INSCI 2019, Perpignan, France, 2–5 December 2019; El Yacoubi, S., Bagnoli, F., Pacini, G., Eds.; Springer: Cham, Switzerland, 2019; Volume 11938, p. 204. [Google Scholar] [CrossRef]
- Montroll, E.W.; Weiss, G.H. Random walks on lattices. II. J. Math. Phys.
**1965**, 6, 167–181. [Google Scholar] [CrossRef] - Bovier, A.; Faggionato, A. Spectral characterization of aging: The REM-like trap model. Ann. Appl. Probab.
**2005**, 15, 1997–2037. [Google Scholar] [CrossRef][Green Version] - Arous, G.B.; Černý, J. Course 8—Dynamics of Trap Models. In Mathematical Statistical Physics; Bovier, A., Dunlop, F., van Enter, A., den Hollander, F., Dalibard, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 83, pp. 331–394. [Google Scholar] [CrossRef]
- Ben Arous, G.; Cabezas, M.; Černý, J.; Royfman, R. Randomly trapped random walks. Ann. Probab.
**2015**, 43, 2405–2457. [Google Scholar] [CrossRef] - Rosenstock, H.B. Random walks on lattices with traps. J. Math. Phys.
**1970**, 11, 487–490. [Google Scholar] [CrossRef] - Handy, G.; Lawley, S.D.; Borisyuk, A. Role of trap recharge time on the statistics of captured particles. Phys. Rev. E
**2019**, 99, 022420. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gönülol, M.; Aydıner, E.; Shikano, Y.; Müstecaplıoğlu, Ö.E. Survival probability in a one-dimensional quantum walk on a trapped lattice. New J. Phys.
**2011**, 13, 033037. [Google Scholar] [CrossRef][Green Version] - Krapivsky, P.; Luck, J.; Mallick, K. Survival of classical and quantum particles in the presence of traps. J. Stat. Phys.
**2014**, 154, 1430–1460. [Google Scholar] [CrossRef][Green Version] - Kittas, A.; Carmi, S.; Havlin, S.; Argyrakis, P. Trapping in complex networks. EPL (Europhys. Lett.)
**2008**, 84, 40008. [Google Scholar] [CrossRef][Green Version] - Xing, C.; Zhang, Y.; Ma, J.; Yang, L.; Guo, L. Exact solutions for average trapping time of random walks on weighted scale-free networks. Fractals
**2017**, 25, 1750013. [Google Scholar] [CrossRef] - Athreya, S.; Drewitz, A.; Sun, R. Random walk among mobile/immobile traps: A short review. In Sojourns in Probability Theory and Statistical Physics-III; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–22. [Google Scholar] [CrossRef][Green Version]
- Woillez, E.; Kafri, Y.; Gov, N.S. Active Trap Model. Phys. Rev. Lett.
**2020**, 124, 118002. [Google Scholar] [CrossRef] [PubMed][Green Version] - Parsons, T.D. Pursuit-evasion in a graph. In Theory and Applications of Graphs; Springer: Berlin/Heidelberg, Germany, 1978; pp. 426–441. [Google Scholar] [CrossRef]
- Boccara, N.; Roblin, O.; Roger, M. Automata network predator-prey model with pursuit and evasion. Phys. Rev. E
**1994**, 50, 4531. [Google Scholar] [CrossRef] [PubMed] - Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA
**2002**, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed][Green Version]

**Figure 1.**Analysis of the Penney Game with $\ell =3$, fair coins and fully absorbing traps. (

**a**) Transition graph, where every node is a possibly winning sequence, the links go from one sequence to the sequences which can be obtained with a coin toss. Each link weights 1/2. (

**b**) Weighted adjacency matrix (Markov matrix) $\mathit{M}$ of the system, where the sequences (indexes) are read as base-two numbers. (

**c**) Victory matrix and (

**d**) victory graph, where arrows mark which sequence wins with the largest probability over the given one.

**Figure 4.**(

**a**) Intransitiveness index $\sigma $ vs absorbency $\u03f5$ for a scale-free network with 100 nodes as a function of the absorbency parameter $\epsilon $. There is intransitive behaviour for intermediate values of this parameter. (

**b**) The small subnet presumably responsible for the the intransitive region $\sigma >0$ (

**c**) Intransitiveness index $\sigma $ vs absorbency $\u03f5$ for this subnet.

**Figure 5.**(

**a**) Example index matrix for hierarchical matrices (communities ${l}_{1}=2,{l}_{2}=6,{l}_{3}=2$): for an entry $k={I}_{ij}$, the corresponding adjacency matrix has ones with probability ${p}_{k}$. (

**b**) Average intransitiveness index $\sigma $ vs absorbency $\u03f5$ for hierarchical communities (${l}_{1}={l}_{2}={l}_{3}=3$, average over 1000 simulations).

**Figure 6.**(

**a**) A “square” city, where streets are alternating one-way ($p=0$). (

**b**) Average intransitiveness index $\sigma $ vs absorbency $\u03f5$ for a “square” city, where p denotes the probability of having two-way streets instead of alternating one-way (city with $4\times 4$ streets, average over 1000 simulations; the results are largely independent on the city size).

**Figure 7.**(

**a**) “Square” city with periodic boundary conditions and different absorbancy (${\u03f5}_{1}=1$). For large enough asymmetry p, there is an intransitive region near (${\u03f5}_{2}=1$). (

**b**) Same city but with reflecting boundary conditions, here one observes an intransitive region for intermediate values of ${\u03f5}_{2}$. The curve with $p=0$ is different from other since in this case one doe not have to average over different realizations (1000) of the choice of one-way streets.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baldi, A.; Bagnoli, F. Intransitiveness: From Games to Random Walks. *Future Internet* **2020**, *12*, 151.
https://doi.org/10.3390/fi12090151

**AMA Style**

Baldi A, Bagnoli F. Intransitiveness: From Games to Random Walks. *Future Internet*. 2020; 12(9):151.
https://doi.org/10.3390/fi12090151

**Chicago/Turabian Style**

Baldi, Alberto, and Franco Bagnoli. 2020. "Intransitiveness: From Games to Random Walks" *Future Internet* 12, no. 9: 151.
https://doi.org/10.3390/fi12090151