RFID RSS Fingerprinting System for Wearable Human Activity Recognition
Abstract
:1. Introduction
2. RSSI Model
2.1. Experimentation
2.2. Model Development
2.3. Proof of Concept
3. Measurement and Discussion
Performance Analysis
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Ageing 2013; Department of Economic and Social Affairs, Population Division; United Nations: New York, NY, USA, 2013. [Google Scholar]
- U. Nations. World Population Ageing 2015; United Nations: New York, NY, USA, 2015; (ST/ESA/SER.A/390). [Google Scholar]
- Naughton, C.; Bennett, K.; Feely, J. Prevalence of chronic disease in the elderly based on a national pharmacy claims database. Age Ageing 2006, 35, 633–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, C.L. Integral healthcare: the benefits and challenges of integrating complementary and alternative medicine with conventional healthcare practice. Integr. Med. Insights 2009, 4, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Kristiansen, M.; Krasnik, A.; Norredam, M. Access to healthcare and alternative health-seeking strategies among undocumented migrants in Denmark. BMC Public Health 2011, 11, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, D.J.; Song, W. Ambient Intelligence and Wearable Computing: Sensors on the Body, in the Home, and Beyond. J. Ambient Intell. Smart Environ. 2009, 1, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hänsel, K. Wearable and ambient sensing for well-being and emotional awareness in the smart workplace. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct, Heidelberg, Germany, 12–16 September 2016. [Google Scholar]
- Islam, M.S.; Hasan, M.M.; Wang, X.; Germack, H.D.; Noor-E-Alam, M. A Systematic Review on Healthcare Analytics: Application and Theoretical Perspective of Data Mining. Healthcare 2018, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oguntala, G.A.; Abd-Alhameed, R.A.; Ali, N.T.; Hu, Y.F.; Noras, J.M.; Eya, N.N.; Elfergani, I.; Rodriguez, J. SmartWall: Novel RFID-Enabled Ambient Human Activity Recognition Using Machine Learning for Unobtrusive Health Monitoring. IEEE Access 2019, 7, 68022–68033. [Google Scholar] [CrossRef]
- Camci, F. Change Point Detection in Time Series Data using Support Vectors. Int. J. Pattern Recognit. Artif. Intell. 2010, 24, 73–95. [Google Scholar] [CrossRef]
- Oguntala, G.; Abd-Alhameed, R.; Jones, S.; Noras, J.; Patwary, M.; Rodriguez, J. Indoor location identification technologies for real-time IoT-based applications: An inclusive survey. Comput. Sci. Rev. 2018, 30, 55–79. [Google Scholar] [CrossRef]
- Ahmad, I.; Asif, R.; Abd-Alhameed, R.A.; Alhassan, H.; Elmegri, F.; Noras, J.M.; See, C.H.; Obidat, H.; Shuaieb, W.; Riberio, J.C.; et al. Current technologies and location-based services. In Proceedings of the 2017 Internet Technologies and Applications (ITA), Wrexham, UK, 12–15 September 2017; pp. 299–304. [Google Scholar]
- Wan, L.; Han, G.; Shu, L.; Chan, S.; Zhu, T. The Application of DOA Estimation Approach in Patient Tracking Systems with High Patient Density. IEEE Trans. Ind. Inform. 2016, 12, 2353–2364. [Google Scholar] [CrossRef]
- Khoshhal, K.; Aliakbarpour, H.; Quintas, J.; Drews, P.; Dias, J. Probabilistic LMA-based classification of human behaviour understanding using Power Spectrum technique. In Proceedings of the Information Fusion (FUSION), Edinburgh, UK, 26–29 July 2010; pp. 1–7. [Google Scholar]
- Yin, J.; Zhang, Q.; Karunanithi, M. Unsupervised daily routine and activity discovery in smart homes. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5497–5500. [Google Scholar]
- Bustamante, N.G.P.; Solas, G.; Bilbao, U. In-bed Patients Behaviour Monitoring System. In Proceedings of the Biocomputation, Bioinformatics, and Biomedical Technologies, Bucharest, Romania, 29 June–5 July 2008; pp. 1–6. [Google Scholar]
- Motoi, K.; Ogawa, M.; Ueno, H.; Fukunaga, S.; Yuji, T.; Higashi, Y.; Tanaka, S.; Fujimoto, T.; Asanoi, H.; Yamakoshi, K.I. Development and clinical evaluation of a home healthcare system measuring in the toilet, bathtub and bed without attachment of any biological sensors. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfu, Greece, 3–5 November 2010; pp. 1–4. [Google Scholar]
- Alahmadi, A.; Soh, B. A smart approach towards a mobile e-health monitoring system architecture. In Proceedings of the 2011 International Conference on Research and Innovation in Information Systems, Kuala Lumpur, Malaysia, 23–24 November 2011; pp. 1–5. [Google Scholar]
- Reilent, E.; Lõõbas, I.; Pahtma, R.; Kuusik, A. Medical and context data acquisition system for patient home monitoring. In Proceedings of the 2010 12th Biennial Baltic Electronics Conference, Tallinn, Estonia, 4–6 October 2010; pp. 269–272. [Google Scholar]
- Kyriazakos, S.; Prasad, N. Delivery of eHealth and eInclusion services for elderly people with mild dementia. In Proceedings of the Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), Chennai, India, 28 February–3 March 2011; pp. 1–4. [Google Scholar]
- Ayase, T.H.R.; Takayama, S.; Sagawa, S.; Ashida, N. A method for supporting at-home fitness exercise guidance and at-home nursing care for the elders, video-based simple measurement system. In Proceedings of the e-health Networking, Applications and Services, Singapore, Singapore, 7–9 July 2008; pp. 182–186. [Google Scholar]
- Long, X.; Gu, I.Y.H.; Flisberg, A.; Thordstein, M. Video-based tracking and quantified assessment of spontaneous limb movements in neonates. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 517–522. [Google Scholar]
- Cuppens, L.L.K.; Ceulemans, B.; van Huffel, S.; Vanrumste, B. Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy. Med. Biol. Eng. Comput. 2010, 48, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.; Sax, C.; Navarro, K.F.; Qiao, M. Interactive Games to Improve Quality of Life for the Elderly: Towards Integration into a WSN Monitoring System. In Proceedings of the eHealth, Telemedicine, and Social Medicine, Sint Maarten, The Netherlands, 10–16 February 2010; pp. 106–112. [Google Scholar]
- Oguntala, G.A.; Abd-Alhameed, R.A.; Jones, S.M.R.; Noras, J.M. Unobtrusive mobile approach to patient location and orientation recognition for elderly care homes. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1517–1521. [Google Scholar]
- Oguntala, G.; Obeidat, H.; Al Khambashi, M.; Elmegri, F.; Abd-Alhameed, R.A.; Yuxiang, T.; Noras, J.J. Design framework for unobtrusive patient location recognition using passive RFID and particle filtering. In Proceedings of the 2017 Internet Technologies and Applications, ITA, Wrexham, UK, 12–15 September 2017; pp. 212–217. [Google Scholar]
- Heikkilä, T.; Strömmer, E.; Kivikunnas, S.; Järviluoma, M.; Korkalainen, M.; Kyllönen, V.; Sarjanoja, E.M.; Peltomaa, I. Low intrusive Ehealth monitoring: human posture and activity level detection with an intelligent furniture network. IEEE Wirel. Commun. 2013, 20, 57–63. [Google Scholar] [CrossRef]
- Freitas, D.J.; Marcondes, T.B.; Nakamura, L.H.V.; Meneguette, R.I. A Health Smart Home System to Report Incidents for Disabled People. In Proceedings of the 2015 International Conference on Distributed Computing in Sensor Systems, Fortaleza, Brazil, 10–12 June 2015; pp. 210–211. [Google Scholar]
- Booranrom, Y.; Watanapa, B.; Mongkolnam, P. Smart bedroom for elderly using Kinect. In Proceedings of the Computer Science and Engineering Conference (ICSEC), Khon Kaen, Thailand, 30 July–1 August 2014; pp. 427–432. [Google Scholar]
- Martin, E.; Shia, V.; Yan, P.; Kuryloski, P.; Seto, E.; Ekambaram, V.; Bajcsy, R. Enhancing context awareness with activity recognition and radio fingerprinting. In Proceedings of the 2011 IEEE Fifth International Conference on Semantic Computing, Palo Alto, CA, USA, 18–21 September 2011; pp. 263–266. [Google Scholar]
- Kim, Y.; Chon, Y.; Cha, H. Smartphone-Based Collaborative and Autonomous Radio Fingerprinting. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42, 112–122. [Google Scholar] [CrossRef]
- Jingjing, W.; Xiulong, L.; Wei, S.; Qiuna, N.; Gulliver, T.A.; Xing, L. Fingerprinting localization based on 60 GHz impulse radio. In Proceedings of the 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 24–26 August 2015; pp. 491–495. [Google Scholar]
- Dama, Y.A.; Abd-Alhameed, R.A.; Hammad, H.; Zaid, R.; Excell, P.S. A Comparison between Vector Algorithm and CRSS Algorithms for Indoor Localization using Received Signal Strength. In Proceedings of the 9th IET International Conference on Computation in Electromagnetics (CEM 2014), London, UK, 31 March–1 April 2014. [Google Scholar]
- Bshara, M.; Orguner, U.; Gustafsson, F.; Biesen, L.V. Fingerprinting Localization in Wireless Networks Based on Received-Signal-Strength Measurements: A Case Study on WiMAX Networks. IEEE Trans. Veh. Technol. 2010, 59, 283–294. [Google Scholar] [CrossRef] [Green Version]
Tag Location | Position on Target |
---|---|
Location_1 | Head |
Location_2 | Arm |
Location_3 | Waist |
Location_4 | Back |
Location_5 | Thigh |
Location_6 | Knee |
Location_7 | Ankle |
Activity(Walking) | Head | Arm | Waist | Back | Thigh | Knee | Ankle |
---|---|---|---|---|---|---|---|
RSS (dBm) | −62.8 | −64.3 | −67.5 | −70.9 | −68.4 | −66.8 | −67.9 |
Test/Ref Positions | Walking Reference | Standing Reference | Sitting Reference | Resting Reference | Laying on Floor Reference | Laying in Bed Reference |
---|---|---|---|---|---|---|
Sitting Test | 2.4 | 4.0 | 1.4 | 1.4 | 2.9 | 2.5 |
Laying on Floor Test | 3.2 | 4.7 | 3.3 | 3.7 | 2.1 | 3.1 |
Performance Metric | Walking | Standing | Sitting | Resting | Laying on Floor | Laying in Bed |
---|---|---|---|---|---|---|
Precision | 0.9801 | 0.9865 | 0.9834 | 0.9831 | 0.9839 | 0.9846 |
Recall | 0.9773 | 0.9834 | 0.9802 | 0.9800 | 0.9810 | 0.9821 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shuaieb, W.; Oguntala, G.; AlAbdullah, A.; Obeidat, H.; Asif, R.; Abd-Alhameed, R.A.; Bin-Melha, M.S.; Kara-Zaïtri, C. RFID RSS Fingerprinting System for Wearable Human Activity Recognition. Future Internet 2020, 12, 33. https://doi.org/10.3390/fi12020033
Shuaieb W, Oguntala G, AlAbdullah A, Obeidat H, Asif R, Abd-Alhameed RA, Bin-Melha MS, Kara-Zaïtri C. RFID RSS Fingerprinting System for Wearable Human Activity Recognition. Future Internet. 2020; 12(2):33. https://doi.org/10.3390/fi12020033
Chicago/Turabian StyleShuaieb, Wafa, George Oguntala, Ali AlAbdullah, Huthaifa Obeidat, Rameez Asif, Raed A. Abd-Alhameed, Mohammed S. Bin-Melha, and Chakib Kara-Zaïtri. 2020. "RFID RSS Fingerprinting System for Wearable Human Activity Recognition" Future Internet 12, no. 2: 33. https://doi.org/10.3390/fi12020033
APA StyleShuaieb, W., Oguntala, G., AlAbdullah, A., Obeidat, H., Asif, R., Abd-Alhameed, R. A., Bin-Melha, M. S., & Kara-Zaïtri, C. (2020). RFID RSS Fingerprinting System for Wearable Human Activity Recognition. Future Internet, 12(2), 33. https://doi.org/10.3390/fi12020033