Next Article in Journal
Survey and Perspectives of Vehicular Wi-Fi versus Sidelink Cellular-V2X in the 5G Era
Previous Article in Journal
Characteristics of Cyberstalking Behavior, Consequences, and Coping Strategies: A Cross-Sectional Study in a Sample of Italian University Students
Open AccessArticle

Dynamic Task Scheduling Algorithm with Deadline Constraint in Heterogeneous Volunteer Computing Platforms

School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
School of Software Engineering, Dalian University of Foreign Languages, Dalian 116044, China
Author to whom correspondence should be addressed.
Future Internet 2019, 11(6), 121;
Received: 21 April 2019 / Revised: 20 May 2019 / Accepted: 23 May 2019 / Published: 28 May 2019
Volunteer computing (VC) is a distributed computing paradigm, which provides unlimited computing resources in the form of donated idle resources for many large-scale scientific computing applications. Task scheduling is one of the most challenging problems in VC. Although, dynamic scheduling problem with deadline constraint has been extensively studied in prior studies in the heterogeneous system, such as cloud computing and clusters, these algorithms can’t be fully applied to VC. This is because volunteer nodes can get offline whenever they want without taking any responsibility, which is different from other distributed computing. For this situation, this paper proposes a dynamic task scheduling algorithm for heterogeneous VC with deadline constraint, called deadline preference dispatch scheduling (DPDS). The DPDS algorithm selects tasks with the nearest deadline each time and assigns them to volunteer nodes (VN), which solves the dynamic task scheduling problem with deadline constraint. To make full use of resources and maximize the number of completed tasks before the deadline constraint, on the basis of the DPDS algorithm, improved dispatch constraint scheduling (IDCS) is further proposed. To verify our algorithms, we conducted experiments, and the results show that the proposed algorithms can effectively solve the dynamic task assignment problem with deadline constraint in VC. View Full-Text
Keywords: volunteer computing; heterogeneous system; dynamic scheduling; deadline volunteer computing; heterogeneous system; dynamic scheduling; deadline
Show Figures

Figure 1

MDPI and ACS Style

Xu, L.; Qiao, J.; Lin, S.; Zhang, W. Dynamic Task Scheduling Algorithm with Deadline Constraint in Heterogeneous Volunteer Computing Platforms. Future Internet 2019, 11, 121.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop