Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Microparticle Formulation
2.2. Analysis of Drug Loading in Microparticles and Encapsulation Efficiency
2.2.1. Hydrocortisone Microparticles
2.2.2. Mesalazine Microparticles
Solvent | pH | Temperature (°C) | Solubility (mg/mL) |
---|---|---|---|
70% ( v/v) ethanol | 6.5 | 25 | 0.81 |
70% ( v/v) ethanol | 6.5 | 37 | 1.40 |
70% ( v/v) ethanol | 4.5 | 25 | 0.81 |
0.01 M HCl | 2 | 25 | 0.89 |
0.1 M HCl | 1 | 25 | 1.50 |
Distilled water | 6.5 | 25 | 0.80 |
2.3. Calculating Drug Loading into Microparticles and Encapsulation Efficiency
2.4. Particle Size Distribution
2.5. Protein Determination
2.6. In Vitro Protein Digestibility
2.7. Reducing Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Drug Loading and Loading Efficiency
Zein (mg) | Drug (mg) | Ratio | %CV | Total mean ± SEM | Total %CV | ||
---|---|---|---|---|---|---|---|
Rep 1 | Rep 2 | Rep 3 | |||||
Hydrocortisone loading (w/w%) | |||||||
800 | 200 | 4 | 7.71 | 15.43 | 3.01 | 5.41 ± 0.60 a | 19 |
600 | 150 | 4 | 7.41 | 2.97 | 1.90 | 4.72 ± 0.05 ab | 2 |
200 | 50 | 4 | 5.66 | 3.98 | 21.67 | 2.84 ± 0.25 b | 16 |
400 | 200 | 2 | 1.07 | 7.36 | 6.37 | 2.69 ± 0.08 x | 5 |
400 | 150 | 2.7 | 5.25 | 4.87 | 7.98 | 3.68 ± 0.86 x | 40 |
400 | 100 | 4 | 10.11 | 1.95 | 9.44 | 3.31 ± 0.20 b,x | 11 |
400 | 50 | 8 | 3.11 | 8.16 | 8.49 | 3.66 ± 0.28 x | 13 |
400 | 25 | 16 | 2.18 | 25.09 | 11.25 | 3.77 ± 0.44 x | 20 |
Hydrocortisone loading efficiency (w/w%) | |||||||
800 | 200 | 4 | 6.66 | 12.64 | 3.42 | 33.13 ± 4.55 A | 24 |
600 | 150 | 4 | 4.28 | 2.80 | 2.38 | 27.47 ± 2.28 AB | 14 |
200 | 50 | 4 | 8.31 | 1.56 | 27.00 | 16.03 ± 1.38 B | 15 |
400 | 200 | 2 | 4.40 | 10.47 | 11.18 | 9.44 ± 0.17 X | 3 |
400 | 150 | 2.7 | 5.53 | 1.48 | 19.01 | 14.54 ± 2.63 X | 31 |
400 | 100 | 4 | 26.98 | 7.51 | 19.66 | 20.66 ± 0.39 B,X | 3 |
400 | 50 | 8 | 5.16 | 6.05 | 4.27 | 40.55 ± 1.64 Y | 7 |
400 | 25 | 16 | 1.98 | 3.78 | 1.27 | 84.18 ± 2.40 Z | 5 |
Prednisolone | Hydrocortisone | Mesalazine | |
---|---|---|---|
Molecular structure | | | |
pKa | - | - | 2.15, 7.10, 12.30 [20] |
Log P | 1.62 [28] | 1.61 [28] | 0.64 [18] |
Aqueous solubility at 25 °C | 0.273 mg/mL [19] | 0.311 mg/mL [19] | 1.85 mg/mL [18] |
Solubility in absolute ethanol | 24.3 mg/mL at 25 °C [19] | 14.7 mg/mL at 25 °C [19] | 0.324 mg/mL at 24 °C [29] |
Zein (mg) | Drug (mg) | Ratio | %CV | Total mean ± SEM | Total %CV | ||
---|---|---|---|---|---|---|---|
Rep 1 | Rep 2 | Rep 3 | |||||
Mesalazine loading (w/w%) | |||||||
800 | 200 | 4 | 6.79 | 14.67 | 10.02 | 4.84 ± 3.38 a | 121 |
600 | 150 | 4 | 8.61 | 26.28 | 4.21 | 4.66 ± 2.34 a | 87 |
200 | 50 | 4 | 5.98 | 13.9 | 42.02 | 4.09 ± 1.54 a | 65 |
400 | 200 | 2 | 19.05 | 5.91 | 1.57 | 8.02 ± 1.87 x | 41 |
400 | 150 | 2.7 | 12.18 | 7.69 | 11.04 | 9.70 ± 2.84 x | 51 |
400 | 100 | 4 | 1.58 | 4.25 | 2.41 | 2.91 ± 0.98 a,x | 59 |
400 | 50 | 8 | 5.90 | 28.59 | 19.78 | 2.21 ± 0.77 x | 60 |
400 | 25 | 16 | 17.96 | ND | ND | 0.14 ± 0.14 x | ND |
Mesalazine loading efficiency (w/w%) | |||||||
800 | 200 | 4 | 7.60 | 12.78 | 3.38 | 33.65 ± 15.90 A | 82 |
600 | 150 | 4 | 11.39 | 19.19 | 11.90 | 23.37 ± 13.33 A | 99 |
200 | 50 | 4 | 4.77 | 12.80 | 37.06 | 24.71 ± 4.23 A | 30 |
400 | 200 | 2 | 8.08 | 3.02 | 3.19 | 40.08 ± 4.77 X,Y | 21 |
400 | 150 | 2.7 | 6.00 | 4.31 | 8.59 | 61.69 ± 9.61 X | 27 |
400 | 100 | 4 | 2.74 | 12.66 | 22.48 | 20.97 ± 4.75 A,XY | 39 |
400 | 50 | 8 | 2.12 | 28.00 | 11.20 | 21.57 ± 7.79 XY | 63 |
400 | 25 | 16 | 15.49 | ND | ND | 2.73 ± 2.73 Y | ND |
3.2. Protein Content and in Vitro Protein Digestibility
Sample | Protein content (g/100 g) | In vitro protein digestibility (%) |
---|---|---|
Zein (raw material) | 85.4 ± 0.4 A | 93.3 ± 2.2 a |
Zein microparticles (empty) | 82.9 ± 1.0 B | 50.3 ± 5.8 b |
3.3. Reducing Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Therapeutic Guidelines. In Gastrointestinal, 5th; Rogers, S. (Ed.) Therapeutic Guidelines Limited: Victoria, Australia, 2011.
- Australian Medicines Handbook Online; Rossi, S. (Ed.) Australian Medicines Handbook Pty Ltd.: Adelaide, Australia, 2013.
- Wallace, J.L.; Sharkey, K.A. Pharmacotherapy of Inflammatory Bowel Disease. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Watts, P.J.; Illum, L. Colonic drug delivery. Drug Dev. Ind. Pharm. 1997, 23, 893–913. [Google Scholar] [CrossRef]
- Wilding, I.R.; Davis, S.S. Targeting of Drugs to the Gut. In Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Boylan, J.C., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 18, pp. 287–308. [Google Scholar]
- Sinha, V.R.; Kumria, R. Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 2003, 18, 3–18. [Google Scholar] [CrossRef]
- Jain, S.K.; Jain, A. Target-specific drug release to the colon. Expert Opin. Drug Deliv. 2008, 5, 483–498. [Google Scholar] [CrossRef]
- CFR—Code of Federal Regulations Title 21. U.S. Patent 184.1984, 1 April 2012. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1984 (accessed on 22 December 2012).
- Fu, T.J.; Abbott, U.R.; Hatzos, C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—A comparative study. J. Agric. Food Chem. 2002, 50, 7154–7160. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Wang, H.; Zhang, L.; Wang, J. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 2005, 26, 109–115. [Google Scholar] [CrossRef]
- Georget, D.M.R.; Barker, S.A.; Belton, P.S. A study on maize proteins as a potential new tablet excipient. Eur. J. Pharm. Biopharm. 2008, 69, 718–726. [Google Scholar] [CrossRef]
- Parris, N.; Cooke, P.; Hicks, K. Encapsulation of essential oils in zein nanospherical particles. J. Agric. Food Chem. 2005, 53, 4788–4792. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations. J. Agric. Food Chem. 2009, 57, 2886–2894. [Google Scholar]
- Lau, E.T.L.; Johnson, S.K.; Mikkelsen, D.; Halley, P.J.; Steadman, K.J. Preparation and in vitro release of zein microparticles loaded with prednisolone for oral delivery. J. Microencapsul. 2012, 29, 706–712. [Google Scholar] [CrossRef]
- Demchak, R.J.; Dybas, R.A. Photostability of abamectin/zein microspheres. J. Agric. Food. Chem. 1997, 45, 260–262. [Google Scholar] [CrossRef]
- Martindale the Complete Drug Reference, 36th; Sweetman, S.C. (Ed.) Pharmaceutical Press: London, UK, 2009; p. 1745.
- Wang, H.J.; Lin, Z.X.; Liu, X.M.; Sheng, S.Y.; Wang, J.Y. Heparin-loaded zein microsphere film and hemocompatibility. J. Control. Release 2005, 105, 120–131. [Google Scholar] [CrossRef]
- Dhaneshwar, S.S.; Gairola, N.; Kandpal, M.; Vadnerkar, G.; Bhatt, L.; Rathi, B.; Kadam, S.S. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrugs of 5-aminosalicylic acid for colon-specific drug delivery in inflammatory bowel disease. Eur. J. Med. Chem. 2009, 44, 3922–3929. [Google Scholar] [CrossRef]
- Ali, H.S.M.; York, P.; Blagden, N.; Soltanpour, S.; Acree, W.E., Jr.; Jouyban, A. Solubility of budesonide, hydrocortisone, and prednisolone in ethanol + water mixtures at 298.2 K. J. Chem. Eng. Data 2010, 55, 578–582. [Google Scholar] [CrossRef]
- French, D.L.; Mauger, J.W. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: Relevance to controlled intestinal drug delivery. Pharm. Res. 1993, 10, 1285–1290. [Google Scholar] [CrossRef]
- Hurtado-Lopez, P.; Murdan, S. Zein microspheres as drug/antigen carriers: A study of their degredation and erosion, in the presence and absence of enzymes. J. Microencapsul. 2006, 23, 303–314. [Google Scholar]
- American Association of Cereal Chemists, Approved Methods of the American Association of Cereal Chemists, Standard Method 46–30, 10th ed; American Association of Cereal Chemists: St. Paul, MN, USA, 2000.
- Aboubacar, A.; Axtell, J.D.; Huang, C.P.; Hamaker, B.R. A rapid protein digestibility assay for identifying highly digestible sorghum lines. Cereal Chem. 2001, 78, 160–165. [Google Scholar] [CrossRef]
- Mertz, E.; Hassen, M.; Cairns-Whittern, C.; Kirleis, A.W.; Tu, L.; Axtell, J.D. Pepsin digestibility of proteins in sorghum and other major cereals. Proc. Natl. Acad. Sci. USA 1984, 81, 1–2. [Google Scholar]
- Hamaker, B.R.; Mohamed, A.A.; Habben, J.E.; Huang, C.P.; Larkins, B.A. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than conventional method. Cereal Chem. 1995, 72, 583–588. [Google Scholar]
- Nunes, A.; Correia, I.; Barros, A.; Delgadillo, I. Sequential in vitro pepsin digestion of uncooked and cooked sorghum maize samples. J. Agric. Food. Chem. 2004, 52, 2052–2058. [Google Scholar] [CrossRef]
- Laidlaw, H.K.C.; Mace, E.S.; Williams, S.B.; Sakrewski, K.; Mudge, A.M.; Prentis, P.J.; Jordan, D.R.; Godwin, I.D. Allelic variation of the beta-, gamma- and delta-kafirin genes in diverse Sorghum genotypes. Theor. Appl. Genet. 2010, 121, 1227–1237. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham Descriptors. J. Pharm. Sci. 2000, 90, 749–784. [Google Scholar]
- Patel, A.; Vaghasiya, A.; Gajera, R.; Baluja, S. Solubility of 5-amino salicylic acid in different solvents at various temperatures. J. Chem. Eng. Data 2010, 55, 1453–1455. [Google Scholar] [CrossRef]
- Capsugel Belgium NV. Coni-Snap Hard Gelatin Capsules: Coni-Snap Capsules Brochure. Available online: http://capsugel.com/en/products-services/products/capsules/coni-snap/ (accessed on 22 December 2012).
- Padua, G.W.; Wang, Q. Controlled Self-Organization of Zein Nanostructures for Encapsulation of Food Ingredients. In Micro/Nanoencapsulation of Active Food Ingredients; Huang, Q., Given, P., Qian, M., Eds.; American Chemical Society: Washington DC, USA, 2009; Volume 1007, pp. 143–155. [Google Scholar]
- Kim, S.; Xu, J. Aggregate formation of zein and its structural inversion in aqueous ethanol. J. Cereal Sci. 2008, 47, 1–5. [Google Scholar] [CrossRef]
- Bodmeier, R.; McGinity, J.W. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. I. Methods and morphology. J. Microencapsul. 1987, 4, 279–288. [Google Scholar] [CrossRef]
- Bodmeier, R.; McGinity, J.W. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. II. Some process parameters influencing the preparation and properties of microspheres. J. Microencapsul. 1987, 4, 289–297. [Google Scholar] [CrossRef]
- Kas, H.S.; Oner, L. Microencapsulation using coacervation/phase separation: An overview of the technique and applications. In Handbook of Pharmaceutical Controlled Release Technology; Wise, D.L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 301–328. [Google Scholar]
- Ghosh, S.K. Functional Coatings and Microencapsulation: A General Perspective. In Functional Coatings: By Polymer Microencapsulation; Ghosh, S.K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–28. [Google Scholar]
- Shahidi, F.; Han, X. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Zein—Product specification. Available online: http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/SPEC/W555025/W555025-BULK______ALDRICH__.pdf (accessed 23 August 2012).
- Gillgren, T.; Stading, M. Mechanical and barrier properties of avenin, kafirin, and zein films. Food Biophys. 2008, 3, 287–294. [Google Scholar] [CrossRef]
- Hurtado-Lopez, P.; Murdan, S. Formulation and characterisation of zein microspheres as delivery vehicles. J. Drug. Deliv. Sci. Technol. 2005, 15, 267–272. [Google Scholar]
- Esen, A. A proposed nomenclature for the alcohol-soluble proteins (zein) of maize (Zea mays L.). J. Cereal Sci. 1987, 5, 117–128. [Google Scholar]
- Lee, S.H.; Hamaker, B.R. Cys155 of 27 kDa maize γ-zein is a key amino acid to improve its in vitro digestibility. FEBS Lett. 2006, 580, 5803–5806. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lau, E.T.L.; Giddings, S.J.; Mohammed, S.G.; Dubois, P.; Johnson, S.K.; Stanley, R.A.; Halley, P.J.; Steadman, K.J. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics 2013, 5, 277-293. https://doi.org/10.3390/pharmaceutics5020277
Lau ETL, Giddings SJ, Mohammed SG, Dubois P, Johnson SK, Stanley RA, Halley PJ, Steadman KJ. Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics. 2013; 5(2):277-293. https://doi.org/10.3390/pharmaceutics5020277
Chicago/Turabian StyleLau, Esther T. L., Steven J. Giddings, Salmaan G. Mohammed, Paul Dubois, Stuart K. Johnson, Roger A. Stanley, Peter J. Halley, and Kathryn J. Steadman. 2013. "Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles" Pharmaceutics 5, no. 2: 277-293. https://doi.org/10.3390/pharmaceutics5020277
APA StyleLau, E. T. L., Giddings, S. J., Mohammed, S. G., Dubois, P., Johnson, S. K., Stanley, R. A., Halley, P. J., & Steadman, K. J. (2013). Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics, 5(2), 277-293. https://doi.org/10.3390/pharmaceutics5020277