Exploring Experimental and Statistical Approaches to Control Oversensitivity of In Vitro Permeability to Excipient Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Vitro Permeability Studies Across MDCK-wt Monolayers
2.2.1. Cell Culture
2.2.2. Cell Viability Studies
2.2.3. Permeability Experiments
2.3. Analytical Methods by µHPLC-Ms/Ms
2.4. Data Analysis
3. Results
3.1. Analytical Methods
3.2. Permeability Studies
3.3. Classification of the Excipient Effect
4. Discussion
4.1. Effects of Common Excipients: Surfactants
4.2. Effects of Common Excipients: Polymeric Disintegrants and Binders
4.3. Effects of Common Excipients: Fillers
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
API | Active pharmaceutical ingredient |
BCS | Biopharmaceutics Classification System |
CCS | Croscarmellose sodium |
CI90 | 90% confidence interval |
DMEM | Dulbecco’s modified Eagle medium |
ER | Efflux ratio |
FBS | Fetal bovine serum |
HBSS | Hank’s balanced salt solution |
HPMC | Hydroxypropyl methyl cellulose |
ICH | International Council for Harmonisation |
Lac | Lactose |
MCC | Microcrystalline cellulose |
MDCK | Madin-Darby Canine Kidney |
nPR | Normalized permeability ratio |
Papp | Apparent permeability |
PR | Permeability ratio |
PVP | Polyvinylpyrrolidone |
SSG | Sodium starch glycolate |
SLS | Sodium lauryl sulfate |
Sorb | Sorbitol |
T80 | Tween 80 |
References
- Koziolek, M.; Augustijns, P.; Berger, C.; Cristofoletti, R.; Dahlgren, D.; Keemink, J.; Matsson, P.; McCartney, F.; Metzger, M.; Mezler, M.; et al. Challenges in Permeability Assessment for Oral Drug Product Development. Pharmaceutics 2023, 15, 2397. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- International Council for Harmonisation (ICH). ICH Harmonised Guideline: Biopharmaceutics Classification System-Based Biowaivers M9 2019. Available online: https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf (accessed on 1 July 2025).
- Rege, B.D.; Yu, L.X.; Hussain, A.S.; Polli, J.E. Effect of Common Excipients on Caco-2 Transport of Low-Permeability Drugs. J. Pharm. Sci. 2001, 90, 1776–1786. [Google Scholar] [CrossRef]
- Ruiz-Picazo, A.; Gonzalez-Alvarez, M.; Gonzalez-Alvarez, I.; Bermejo, M. Effect of Common Excipients on Intestinal Drug Absorption in Wistar Rats. Mol. Pharm. 2020, 17, 2310–2318. [Google Scholar] [CrossRef]
- Parr, A.; Hidalgo, I.J.; Bode, C.; Brown, W.; Yazdanian, M.; Gonzalez, M.A.; Sagawa, K.; Miller, K.; Jiang, W.; Stippler, E.S. The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers. Pharm. Res. 2016, 33, 167–176. [Google Scholar] [CrossRef]
- Dahlgren, D.; Roos, C.; Johansson, P.; Tannergren, C.; Lundqvist, A.; Langguth, P.; Sjöblom, M. The Effects of Three Absorption-Modifying Critical Excipients on the in Vivo Intestinal Absorption of Six Model Compounds in Rats and Dogs. Int. J. Pharm. 2018, 547, 158–168. [Google Scholar] [CrossRef]
- Lu, D.; Rege, B.; Raw, A.; Yang, J.; Alam, K.; Bode, C.; Zhao, L.; Faustino, P.; Wu, F.; Shakleya, D.; et al. Antioxidants Had No Effects on the In-Vitro Permeability of BCS III Model Drug Substances. J. Pharm. Sci. 2024, 113, 2708–2714. [Google Scholar] [CrossRef]
- Gleeson, J.P.; Zhang, S.Y.; Subelzu, N.; Ling, J.; Nissley, B.; Ong, W.; Nofsinger, R.; Kesisoglou, F. Head-to-Head Comparison of Caco-2 Transwell and Gut-on-a-Chip Models for Assessing Oral Peptide Formulations. Mol. Pharm. 2024, 21, 3880–3888. [Google Scholar] [CrossRef]
- Chiang Yu, Y.; Lu, D.; Rege, B.; Polli, J.E. Lack of Effect of Antioxidants on Biopharmaceutics Classification System (BCS) Class III Drug Permeability. J. Pharm. Sci. 2024, 113, 2215–2222. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Ong, W.S.Y.; Subelzu, N.; Gleeson, J.P. Validation of a Caco-2 Microfluidic Chip Model for Predicting Intestinal Absorption of BCS Class I-IV Drugs. Int. J. Pharm. 2024, 656, 124089. [Google Scholar] [CrossRef]
- Morita, T.; Yoshida, H.; Tomita, N.; Sato, Y. Comparison of in Vitro Screening Methods for Evaluating the Effects of Pharmaceutical Excipients on Membrane Permeability. Int. J. Pharm. 2024, 665, 124727. [Google Scholar] [CrossRef]
- Zur, M.; Gasparini, M.; Wolk, O.; Amidon, G.L.; Dahan, A. The Low/High Bcs Permeability Class Boundary: Physicochemical Comparison of Metoprolol and Labetalol. Mol. Pharm. 2014, 11, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- Ozawa, M.; Tsume, Y.; Zur, M.; Dahan, A.; Amidon, G.L. Intestinal Permeability Study of Minoxidil: Assessment of Minoxidil as a High Permeability Reference Drug for Biopharmaceutics Classification. Mol. Pharm. 2015, 12, 204–211. [Google Scholar] [CrossRef]
- Gurjar, R.; Chan, C.Y.S.; Curley, P.; Sharp, J.; Chiong, J.; Rannard, S.; Siccardi, M.; Owen, A. Inhibitory Effects of Commonly Used Excipients on P-Glycoprotein in Vitro. Mol. Pharm. 2018, 15, 4835–4842. [Google Scholar] [CrossRef] [PubMed]
- Otter, M.; Oswald, S.; Siegmund, W.; Keiser, M. Effects of Frequently Used Pharmaceutical Excipients on the Organic Cation Transporters 1–3 and Peptide Transporters 1/2 Stably Expressed in MDCKII Cells. Eur. J. Pharm. Biopharm. 2017, 112, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Pottel, J.; Khuri, N.; Ngo, H.X.; Ni, Z.; Tsakalozou, E.; Warren, M.S.; Huang, Y.; Shoichet, B.K.; Giacomini, K.M. Interactions of Oral Molecular Excipients with Breast Cancer Resistance Protein, BCRP. Mol. Pharm. 2020, 17, 748–756. [Google Scholar] [CrossRef]
- International Council for Harmonisation (ICH). Drug Interaction Studies M12. 2024. Available online: https://database.ich.org/sites/default/files/ICH_M12_Step4_Guideline_2024_0521_0.pdf (accessed on 1 July 2025).
- CDER/FDA Guidance for Industry. Bioavailability and Bioequivalence Studies for Orally Administered Drug Products—General Guidance for Industry Bioavailability and Bioequivalence; FDA Guidance; Food and Drug Administration: Rockville, MD, USA, 2002; pp. 1–24. [Google Scholar]
- Volpe, D.A. Drug-Permeability and Transporter Assays in Caco-2 and MDCK Cell Lines. Future Med. Chem. 2011, 3, 2063–2077. [Google Scholar] [CrossRef]
- Mehta, M.; Polli, J.E.; Seo, P.; Bhoopathy, S.; Berginc, K.; Kristan, K.; Cook, J.; Dressman, J.B.; Mandula, H.; Munshi, U.; et al. Drug Permeability—Best Practices for Biopharmaceutics Classification System (BCS)-Based Biowaivers: A Workshop Summary Report. J. Pharm. Sci. 2023, 112, 1749–1762. [Google Scholar] [CrossRef]
- García, M.A.; Contreras, D.; González, P.M. Metformin Transport in Native MDCK-Wt and MDCK-II Monolayers Unveils Functional Inter-Strains Differences Influencing Drug Permeability. Pharm. Res. 2020, 37, 121. [Google Scholar] [CrossRef]
- Avdeef, A. Absorption and Drug Development; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-11805-745-2. [Google Scholar]
- Sugano, K. Biopharmaceutics Modeling and Simulations; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-1-11802-868-1. [Google Scholar]
- Hauschke, D.; Steinijans, V.W.; Diletti, E.; Burke, M. Sample Size Determination for Bioequivalence Assessment Using a Multiplicative Model. J. Pharmacokinet. Biopharm. 1992, 20, 557–561. [Google Scholar] [CrossRef]
- Aungst, B.J. The Effects of Dose Volume and Excipient Dose on Luminal Concentration and Oral Drug Absorption. AAPS J. 2020, 22, 99. [Google Scholar] [CrossRef]
- Chen, E.C.; Broccatelli, F.; Plise, E.; Chen, B.; Liu, L.; Cheong, J.; Zhang, S.; Jorski, J.; Gaffney, K.; Umemoto, K.K.; et al. Evaluating the Utility of Canine Mdr1 Knockout Madin-Darby Canine Kidney i Cells in Permeability Screening and Efflux Substrate Determination. Mol. Pharm. 2018, 15, 5103–5113. [Google Scholar] [CrossRef]
- Departamento Agencia Nacional de Medicamentos; Subdepartamento de Registro Sanitario de Productos Farmacéuticos Bioequivalentes. Nota-Tecnica-N°-16. Detalla Modelo Experimental Para Determinar la Permeabilidad en Monocapas Celulares. 2024. Available online: https://www.ispch.gob.cl/wp-content/uploads/2024/07/Nota-Tecnica-N%C2%B0-16.pdf (accessed on 1 July 2025).
- Yin, J.; Duan, H.; Wang, J. Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters HOCT2 and HMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation. J. Pharmacol. Exp. Ther. 2016, 359, 401–410. [Google Scholar] [CrossRef]
- Yin, J.; Duan, H.; Shirasaka, Y.; Prasad, B.; Wang, J. Atenolol Renal Secretion Is Mediated by Human Organic Cation Transporter 2 and Multidrug and Toxin Extrusion Proteins. Drug Metab. Dispos. 2015, 43, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kusuhara, H.; Yokochi, M.; Toyoshima, J.; Inoue, K.; Yuasa, H.; Sugiyama, Y. Competitive Inhibition of the Luminal Efflux by Multidrug and Toxin Extrusions, but Not Basolateral Uptake by Organic Cation Transporter 2, Is the Likely Mechanism Underlying the Pharmacokinetic Drug-Drug Interactions Caused by Cimetidine in the Kidney. J. Pharmacol. Exp. Ther. 2012, 340, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K.-I. Substrate Specificity of MATE1 and MATE2-K, Human Multidrug and Toxin Extrusions/H+-Organic Cation Antiporters. Biochem. Pharmacol. 2007, 74, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Saaby, L.; Helms, H.C.C.; Brodin, B. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-Glycoprotein (ABCB1) for Drug Screening Studies. Mol. Pharm. 2016, 13, 640–652. [Google Scholar] [CrossRef]
- Neuhoff, S.; Ungell, A.-L.; Zamora, I.; Artursson, P. PH-Dependent Bidirectional Transport of Weakly Basic Drugs across Caco-2 Monolayers: Implications for Drug-Drug Interactions. Pharm. Res. 2003, 20, 1141–1148. [Google Scholar] [CrossRef]
- Estudante, M.; Morais, J.G.; Soveral, G.; Benet, L.Z. Intestinal Drug Transporters: An Overview. Adv. Drug Deliv. Rev. 2013, 65, 1340–1356. [Google Scholar] [CrossRef]
- Vaithianathan, S.; Haidar, S.H.; Zhang, X.; Jiang, W.; Avon, C.; Dowling, T.C.; Shao, C.; Kane, M.; Hoag, S.W.; Flasar, M.H.; et al. Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs Cimetidine and Acyclovir. J. Pharm. Sci. 2016, 105, 996–1005. [Google Scholar] [CrossRef]
- Markovic, M.; Zur, M.; Garsiani, S.; Porat, D.; Cvijić, S.; Amidon, G.L.; Dahan, A. The Role of Paracellular Transport in the Intestinal Absorption and Biopharmaceutical Characterization of Minoxidil. Pharmaceutics 2022, 14, 1360. [Google Scholar] [CrossRef]
- Kubbinga, M.; Augustijns, P.; García, M.A.; Heinen, C.; Wortelboer, H.M.; Verwei, M.; Langguth, P. The Effect of Chitosan on the Bioaccessibility and Intestinal Permeability of Acyclovir. Eur. J. Pharm. Biopharm. 2019, 136, 147–155. [Google Scholar] [CrossRef]
- García, M.A.; Bolger, M.B.; Suarez-Sharp, S.; Langguth, P. Predicting Pharmacokinetics of Multisource Acyclovir Oral Products Through Physiologically Based Biopharmaceutics Modeling. J. Pharm. Sci. 2022, 111, 262–273. [Google Scholar] [CrossRef]
- Li, L.; Weng, Y.; Wang, W.; Bai, M.; Lei, H.; Zhou, H.; Jiang, H. Multiple Organic Cation Transporters Contribute to the Renal Transport of Sulpiride. Biopharm. Drug Dispos. 2017, 38, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.N.D.S.; Tadjerpisheh, S.; Abed, M.A.; Saadatmand, A.R.; Weksler, B.; Romero, I.A.; Couraud, P.O.; Brockmöller, J.; Tzvetkov, M.V. The Poorly Membrane Permeable Antipsychotic Drugs Amisulpride and Sulpiride Are Substrates of the Organic Cation Transporters from the Slc22 Family. AAPS J. 2014, 16, 1247–1256. [Google Scholar] [CrossRef]
- Rege, B.D.; Kao, J.P.Y.; Polli, J.E. Effects of Nonionic Surfactants on Membrane Transporters in Caco-2 Cell Monolayers. Eur. J. Pharm. Sci. 2002, 16, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wang, Z.; Li, P.; Yang, Q. The Effect of Various Absorption Enhancers on Tight Junction in the Human Intestinal Caco-2 Cell Line. Drug Dev. Ind. Pharm. 2013, 4, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Misaka, S.; Knop, J.; Singer, K.; Hoier, E.; Keiser, M.; Müller, F.; Glaeser, H.; König, J.; Fromm, M.F. The Nonmetabolized β-Blocker Nadolol Is a Substrate of OCT1, OCT2, MATE1, MATE2-K, and P-Glycoprotein, but Not of OATP1B1 and OATP1B3. Mol. Pharm. 2016, 13, 512–519. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, M.; Morrison, R.A.; Chong, S. Commonly Used Surfactant, Tween 80, Improves Absorption of P-Glycoprotein Substrate, Digoxin, in Rats. Arch. Pharmacal Res. 2003, 26, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Metry, M.; Krug, S.A.; Karra, V.K.; Ekins, S.; Hoag, S.W.; Kane, M.A.; Fink, J.C.; Polli, J.E. Lack of an Effect of Polysorbate 80 on Intestinal Drug Permeability in Humans. Pharm. Res. 2022, 39, 1881–1890. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kishimoto, H.; Nakagawa, M.; Sakamoto, N.; Tobe, Y.; Furuya, T.; Tomita, M.; Hayashi, M. Effects of Pharmaceutical Excipients on Membrane Permeability in Rat Small Intestine. Int. J. Pharm. 2013, 453, 363–370. [Google Scholar] [CrossRef]
- Mai, Y.; Madla, C.M.; Shao, H.; Qin, Y.; Merchant, H.A.; Murdan, S.; Basit, A.W. Sex-Specific Effects of Excipients on Oral Drug Bioavailability. Int. J. Pharm. 2022, 629, 122365. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Wang, W.; Wang, L.; Zheng, J.; Wu, S.; Pan, Y.; Li, S.; Zhao, J.; Cai, Z. Effects of Commonly Used Surfactants, Poloxamer 188 and Tween 80, on the Drug Transport Capacity of Intestinal Glucose Transporters. AAPS PharmSciTech 2024, 25, 163. [Google Scholar] [CrossRef]
- García, M.A.; Hensler, G.; Al-Gousous, J.; Pielenhofer, J.; Wagner, M.; Lennernäs, H.; Langguth, P. Novel Food Drug Interaction Mechanism Involving Acyclovir, Chitosan and Endogenous Mucus. Drug Metab. Pharmacokinet. 2023, 49, 100491. [Google Scholar] [CrossRef] [PubMed]
- Metry, M.; Polli, J.E. Evaluation of Excipient Risk in BCS Class I and III Biowaivers. AAPS J. 2022, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Straughn, A.B.; Sadrieh, N.; Meyer, M.; Faustino, P.J.; Ciavarella, A.B.; Meibohm, B.; Yates, C.R.; Hussain, A.S. A Modern View of Excipient Effects on Bioequivalence: Case Study of Sorbitol. Pharm. Res. 2007, 24, 73–80. [Google Scholar] [CrossRef]
- Kubbinga, M.; Moghani, L.; Langguth, P. Novel Insights into Excipient Effects on the Biopharmaceutics of APIs from Different BCS Classes: Lactose in Solid Oral Dosage Forms. Eur. J. Pharm. Sci. 2014, 61, 27–31. [Google Scholar] [CrossRef] [PubMed]
Drug | MW (g/mol) | pKa a | LogP a | LogD a | Fa b |
---|---|---|---|---|---|
Acyclovir | 225.2 | 9.22 (HA) 2.32 (BH+) | −1.8 | −1.8 | 0.2 |
Atenolol | 266.3 | 9.54 (BH+) | 0.22 | −2.3 | 0.5 |
Cimetidine | 252.3 | 7.01 (BH+) | 0.48 | 0.3 | 0.68 |
Enalaprilat | 348.40 | 7.84 (BH+) 3.17 (HA) 1.25 (HA) | −0.13 | −2.5 | <0.1 |
Hydrochlorothiazide | 297.34 | 9.96 (HA) 8.75 (HA) | −0.03 | −0.15 | 0.67 |
Minoxidil | 209.2 | 4.6 (BH+) | 0.6 | 0.6 | >0.9 |
Nadolol | 309.4 | 9.75 (BH+) | 0.85 | −1.9 | 0.35 |
Sulpiride | 341.4 | 10.04 (HA) 9.43 (BH+) | 1.3 | −0.3 | 0.44 |
Excipient | Use | Max. Amount (mg) |
---|---|---|
Lactose monohydrate (Lac) | Filler | 400 |
Sorbitol (Sorb) | Humectant, diluent | 337 b |
Sodium lauryl sulfate (SLS) | Surfactant | 8.2 |
Tween 80 (T80) | Surfactant | 418 b |
Microcrystalline cellulose (MCC) | Filler | 750 |
Hydroxypropyl methylcellulose (HPMC) | Binder, | 92 |
Polyvinylpyrrolidone (PVP) | Binder | 53 |
Sodium starch glycolate (SSG) | Disintegrant | 450 |
Croscarmellose (CCS) | Disintegrant | 48 |
Papp (SEM) × 106 (cm/s) | ||||||
---|---|---|---|---|---|---|
EXCP | Acyclovir | Cimetidine | Enalaprilat | Hydrochlorothiazide | Nadolol | Sulpiride |
Control a | 0.19 (0.05) | 0.57 b (0.06) | 0.06 (0.01) | 0.56 (0.18) | 0.38 (0.06) | 0.45 (0.04) |
Lac | 0.05 (0.02) | 0.81 c (0.08) | 0.15 (0.05) | 0.77 (0.33) | 0.44 (0.02) | 0.72 b (0.23) |
Sorb | 0.04 (0.01) | 0.66 (0.17) | 0.13 (0.04) | 0.37 (0.03) | 0.75 (0.20) | 0.56 (0.01) |
SLS | 0.52 (0.01) | 0.73 c (0.16) | 0.27 (0.06) | 1.03 (0.20) | 3.46 c (0.33) | 0.11 (0.01) |
T80 | 0.11 c (0.01) | 2.20 c (0.37) | 0.21 c (0.11) | 0.78 c (0.09) | 5.00 b (3.6) | 0.08 b (0.01) |
MCC | 0.02 c (0.02) | 0.44 c (0.11) | 0.32 (0.05) | 0.46 b (0.01) | 0.26 c (0.09) | 0.40 c (0.08) |
HPMC | 0.07 (0.01) | 0.65 c (0.08) | 0.18 (0.02) | 0.76 (0.29) | 0.42 b (0.04) | 0.50 b (0.07) |
PVP | 0.02 (0.02) | 0.74 c (0.15) | 0.07 (0.03) | 0.37 (0.04) | 0.81 b (0.11) | 0.58 b (0.06) |
CCS | 0.03 (0.01) | 0.83 c (0.11) | 0.19 (0.09) | 0.56 (0.18) | 0.52 b (0.06) | 0.04 (0.01) |
SSG | 0.02 b (0.01) | 0.40 c (0.04) | 0.30 (0.02) | 0.93 b (0.30) | 0.21 c (0.04) | 0.08 c (0.01) |
Statistical Method | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXCP | 90% Confidence Interval | ANOVA | Consensus b | ||||||||||
ACV | CMT | ENLPT | HCTZ | NAD | SULP | ACV | CMT | ENLPT | HCTZ | NAD | SULP | ||
Lactose | ↓ | ↑ | ↑ | -- | -- | -- | ↓ | -- | -- | -- | -- | -- | 4 |
Sorbitol | ↓ | -- | -- | -- | ↑ | ↑ | ↓ | -- | -- | -- | -- | ↓ | 4 |
SLS | ↑ | -- | ↑ | -- | ↑ | ↓ | ↑ | -- | -- | -- | ↑ | ↓ | 5 |
Tween 80 | ↓ | ↑ | ↑ | -- | -- | ↓ | ↓ | ↑ | -- | -- | -- | ↓ | 5 |
MCC | ↓ | -- | ↑ | -- | -- | -- | ↓ | ↓ | ↑ | -- | -- | -- | 5 |
HPMC | ↓ | ↑ | ↑ | -- | -- | -- | ↓ | -- | -- | -- | -- | -- | 4 |
PVP | ↓ | -- | -- | -- | ↑ | ↑ | ↓ | -- | -- | -- | -- | -- | 4 |
CCS | ↓ | ↑ | ↑ | -- | ↑ | ↓ | ↓ | -- | -- | -- | -- | ↓ | 3 |
SSG | ↓ | ↓ | ↑ | -- | ↓ | ↓ | ↓ | ↓ | -- | -- | -- | ↓ | 4 |
Absolute frequency of each type of effect per model drug by each method | CI90 vs. ANOVA c | ||||||||||||
No ↑ | 1 | 4 | 7 | 0 | 4 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | 18 vs. 4 |
No ↓ | 8 | 1 | 0 | 0 | 1 | 4 | 8 | 2 | 0 | 0 | 0 | 5 | 14 vs. 15 |
No -- | 0 | 4 | 2 | 9 | 4 | 3 | 0 | 6 | 8 | 9 | 8 | 4 | 22 vs. 35 |
Statistical Method | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EXCP | 90% Confidence Interval | ANOVA | Consensus b | ||||||||||
ACV | CMT | ENLPT | HCTZ | NAD | SULP | ACV | CMT | ENLPT | HCTZ | NAD | SULP | ||
Lactose | ↓ | -- | -- | -- | ↑ | ↓ | ↓ | -- | -- | -- | -- | -- | 4 |
Sorbitol | ↓ | -- | -- | ↓ | ↑ | -- | ↓ | -- | -- | -- | -- | -- | 4 |
SLS | ↑ | ↓ | ↑ | ↓ | -- | ↑ | ↑ | -- | ↑ | -- | -- | -- | 3 |
Tween 80 | ↓ | ↑ | ↑ | ↑ | -- | ↑ | ↓ | ↑ | ↑ | -- | -- | ↑ | 5 |
MCC | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | -- | -- | -- | ↑ | 3 |
HPMC | ↓ | -- | ↑ | -- | -- | ↓ | ↓ | -- | ↑ | -- | -- | -- | 5 |
PVP | ↓ | -- | ↓ | ↓ | ↑ | ↑ | ↓ | -- | -- | -- | -- | -- | 2 |
CCS | ↓ | -- | ↑ | ↓ | ↑ | ↓ | ↓ | -- | ↑ | -- | -- | -- | 3 |
SSG | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↓ | ↑ | ↑ | ↑ | -- | ↑ | 5 |
Absolute frequency of each type of effect per model drug by each method | CI90 vs. ANOVAc | ||||||||||||
No ↑ | 1 | 3 | 6 | 3 | 6 | 5 | 1 | 3 | 5 | 1 | 0 | 3 | 24 vs. 13 |
No ↓ | 8 | 1 | 1 | 4 | 0 | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 17 vs. 8 |
No -- | 0 | 5 | 2 | 2 | 3 | 1 | 0 | 6 | 4 | 8 | 9 | 6 | 13 vs. 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, M.A.; Aceituno, A.; Díaz, N.B.; Tapia, E.M.; Contreras, D.; López-Lagos, C.; Sánchez, V.; González, P.M. Exploring Experimental and Statistical Approaches to Control Oversensitivity of In Vitro Permeability to Excipient Effects. Pharmaceutics 2025, 17, 1110. https://doi.org/10.3390/pharmaceutics17091110
García MA, Aceituno A, Díaz NB, Tapia EM, Contreras D, López-Lagos C, Sánchez V, González PM. Exploring Experimental and Statistical Approaches to Control Oversensitivity of In Vitro Permeability to Excipient Effects. Pharmaceutics. 2025; 17(9):1110. https://doi.org/10.3390/pharmaceutics17091110
Chicago/Turabian StyleGarcía, Mauricio A., Alexis Aceituno, Nicole B. Díaz, Eduardo M. Tapia, Danae Contreras, Constanza López-Lagos, Virginia Sánchez, and Pablo M. González. 2025. "Exploring Experimental and Statistical Approaches to Control Oversensitivity of In Vitro Permeability to Excipient Effects" Pharmaceutics 17, no. 9: 1110. https://doi.org/10.3390/pharmaceutics17091110
APA StyleGarcía, M. A., Aceituno, A., Díaz, N. B., Tapia, E. M., Contreras, D., López-Lagos, C., Sánchez, V., & González, P. M. (2025). Exploring Experimental and Statistical Approaches to Control Oversensitivity of In Vitro Permeability to Excipient Effects. Pharmaceutics, 17(9), 1110. https://doi.org/10.3390/pharmaceutics17091110