Antibacterial Activity of Fusidic Acid-Loaded Electrospun Polylactide Fiber Fleeces Against Periodontopathogenic Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Species
2.2. Microdilution Assay
2.3. Manufacturing of Electrospun Poly(L-Lactide-Co-D/L-Lactide) Fiber Fleeces Loaded with Fusidic Acid
2.4. Optical Characterization of the Electrospun Poly(L-Lactide-Co-D/L-Lactide) Fiber Fleeces
2.5. Collection of Eluates for Antibacterial and Cytocompatibility Assessment
2.6. Agar Diffusion Assay
2.7. Cytotoxicity Assessment
2.8. Statistical Analysis
3. Results
3.1. Minimal Inhibitory Concentrations of Fusidic Acid for Various Oral Bacteria
3.2. Microscopic Characterization of Poly(L-Lactide-Co-D/L-Lactide) Fiber Fleeces
3.3. Antibacterial Effect of Fusidic Acid-Loaded Electrospun Fiber Fleeces—Agar Diffusion Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAS | Antibiotic/antimycotic solution |
ATCC | American Type Culture Collection |
MDPI | Multidisciplinary Digital Publishing Institute |
MIC | Minimal inhibitory concentration |
DSMZ | Deutsche Sammlung von Mikroorganismen und Zellkulturen |
DOAJ | Directory of open access journals |
HGF | Human gingival fibroblasts |
HPA | Hydroxyapatite |
OD | optical density |
PLA | Poly lactic acid |
PLGA | Poly(lactic-co-glycolic) acid |
MRSA | Methicillin-resistant Staphylococcus aureus |
SRP | Scaling and root planing |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Di Stefano, M.; Polizzi, A.; Santonocito, S.; Romano, A.; Lombardi, T.; Isola, G. Impact of Oral Microbiome in Periodontal Health and Periodontitis: A Critical Review on Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 5142. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T.; Lambris, J.D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontology 2000 2020, 84, 14–34. [Google Scholar] [CrossRef]
- Ilyes, I.; Boariu, M.; Rusu, D.; Iorio-Siciliano, V.; Vela, O.; Boia, S.; Radulescu, V.; Șurlin, P.; Jentsch, H.; Lodin, A.; et al. Comparative Study of Systemic vs. Local Antibiotics with Subgingival Instrumentation in Stage III–IV Periodontitis: A Retrospective Analysis. Antibiotics 2024, 13, 430. [Google Scholar] [CrossRef]
- Isola, G. Antibiotics and Antimicrobials for Treatment of the Oral Microbiota: Myths and Facts in Research and Clinical Practice. Antibiotics 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Sigusch, B.; Beier, M.; Klinger, G.; Pfister, W.; Glockmann, E. A 2-step non-surgical procedure and systemic antibiotics in the treatment of rapidly progressive periodontitis. J. Periodontol. 2001, 72, 275–283. [Google Scholar] [CrossRef]
- Sgolastra, F.; Severino, M.; Petrucci, A.; Gatto, R.; Monaco, A. Effectiveness of metronidazole as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A systematic review and meta-analysis. J. Periodontal Res. 2014, 49, 10–19. [Google Scholar] [CrossRef]
- Sigusch, B.W.; Güntsch, A.; Pfitzner, A.; Glockmann, E. Enhanced root planing and systemic metronidazole administration improve clinical and microbiological outcomes in a two-step treatment procedure. J. Periodontol. 2005, 76, 991–997. [Google Scholar] [CrossRef]
- Teughels, W.; Feres, M.; Oud, V.; Martín, C.; Matesanz, P.; Herrera, D. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47 (Suppl. 22), 257–281. [Google Scholar] [CrossRef]
- Zandbergen, D.; Slot, D.E.; Niederman, R.; Van der Weijden, F.A. The concomitant administration of systemic amoxicillin and metronidazole compared to scaling and root planing alone in treating periodontitis: =a systematic review=. BMC Oral Health 2016, 16, 27. [Google Scholar] [CrossRef]
- Reise, M.; Kranz, S.; Guellmar, A.; Wyrwa, R.; Rosenbaum, T.; Weisser, J.; Jurke, A.; Schnabelrauch, M.; Heyder, M.; Watts, D.C.; et al. Coaxial electrospun nanofibers as drug delivery system for local treatment of periodontitis. Dent. Mater. 2023, 39, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Reise, M.; Wyrwa, R.; Müller, U.; Zylinski, M.; Völpel, A.; Schnabelrauch, M.; Berg, A.; Jandt, K.D.; Watts, D.C.; Sigusch, B.W. Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dent. Mater. 2012, 28, 179–188. [Google Scholar] [CrossRef]
- Amato, M.; Santonocito, S.; Polizzi, A.; Tartaglia, G.M.; Ronsivalle, V.; Viglianisi, G.; Grippaudo, C.; Isola, G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics 2023, 15, 1312. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Li, Y.; Huang, Z.; Guo, Z.Z.; Luo, B.; Zhou, C.R.; Li, H. A multifunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration. J. Biomater. Appl. 2020, 34, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Ul Hassan, S.; Bilal, B.; Nazir, M.S.; Naqvi, S.A.R.; Ali, Z.; Nadeem, S.; Muhammad, N.; Palvasha, B.A.; Mohyuddin, A. Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chem. Biol. Drug Des. 2021, 98, 1007–1024. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, W.; Feng, Z.; Liu, Y.; Liu, P.; Xie, Y.; Yu, D.G. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int. J. Nanomed. 2022, 17, 4137–4162. [Google Scholar] [CrossRef]
- Wang, J.; You, C.; Xu, Y.; Xie, T.; Wang, Y. Research Advances in Electrospun Nanofiber Membranes for Non-Invasive Medical Applications. Micromachines 2024, 15, 1226. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Zhai, W.; Zhang, Z.; Liu, Y.; Cheng, S.; Zhang, H. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 2022, 13, 5056. [Google Scholar] [CrossRef]
- Schkarpetkin, D.; Reise, M.; Wyrwa, R.; Völpel, A.; Berg, A.; Schweder, M.; Schnabelrauch, M.; Watts, D.C.; Sigusch, B.W. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole. Dent. Mater. 2016, 32, 951–960. [Google Scholar] [CrossRef]
- Rathore, P.; Schiffman, J.D. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS Appl. Mater. Interfaces 2021, 13, 48–66. [Google Scholar] [CrossRef]
- Bandyopadhyay, D. Topical Antibacterials in Dermatology. Indian J. Dermatol. 2021, 66, 117–125. [Google Scholar] [CrossRef]
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.; Turnidge, J. Fusidic acid in vitro activity. Int. J. Antimicrob. Agents 1999, 12 (Suppl. 2), S45–S58. [Google Scholar] [CrossRef]
- Ahmed, I.S.; Elnahas, O.S.; Assar, N.H.; Gad, A.M.; El Hosary, R. Nanocrystals of Fusidic Acid for Dual Enhancement of Dermal Delivery and Antibacterial Activity: In Vitro, Ex Vivo and In Vivo Evaluation. Pharmaceutics 2020, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.; Hofsli, M.; Gade, U.L.; Heegaard, S.; Pottegård, A. Use of topical ocular antibiotics in young children: A Scandinavian drug utilization study. Acta Ophthalmol. 2018, 96, 789–794. [Google Scholar] [CrossRef]
- Bonamonte, D.; Belloni Fortina, A.; Neri, L.; Patrizi, A. Fusidic acid in skin infections and infected atopic eczema. G Ital Dermatol Venereol 2014, 149, 453–459. [Google Scholar] [PubMed]
- Naseef, H.; Sahoury, Y.; Farraj, M.; Qurt, M.; Abukhalil, A.D.; Jaradat, N.; Sabri, I.; Rabba, A.K.; Sbeih, M. Novel Fusidic Acid Cream Containing Metal Ions and Natural Products against Multidrug-Resistant Bacteria. Pharmaceutics 2022, 14, 1638. [Google Scholar] [CrossRef]
- Holmgaard, D.B.; Marina, D.; Hansen, F.; Christensen, J.J. Bacteremia and urogenital infection with Actinomyces urogenitalis following prolonged urinary retention. Apmis 2020, 128, 20–24. [Google Scholar] [CrossRef]
- Steininger, C.; Willinger, B. Resistance patterns in clinical isolates of pathogenic Actinomyces species. J. Antimicrob. Chemother. 2016, 71, 422–427. [Google Scholar] [CrossRef]
- Abdelmassih, M.M.; Ismail, M.M.; Kashef, M.T.; Essam, T. Repurposing fusidic acid as an antimicrobial against enterococci with a low probability of resistance development. Int. Microbiol. 2024, 27, 1807–1819. [Google Scholar] [CrossRef]
- Leclercq, R.; Bismuth, R.; Casin, I.; Cavallo, J.D.; Croizé, J.; Felten, A.; Goldstein, F.; Monteil, H.; Quentin-Noury, C.; Reverdy, M.; et al. In vitro activity of fusidic acid against streptococci isolated from skin and soft tissue infections. J. Antimicrob. Chemother. 2000, 45, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Steinkraus, G.E.; McCarthy, L.R. In vitro activity of sodium fusidate against anaerobic bacteria. Antimicrob. Agents Chemother. 1979, 16, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Granlund, M.; Åberg, C.H.; Johansson, A.; Claesson, R. Discrepancies in Antimicrobial Susceptibility between the JP2 and the Non-JP2 Genotype of Aggregatibacter actinomycetemcomitans. Antibiotics 2022, 11, 317. [Google Scholar] [CrossRef]
- Curbete, M.M.; Salgado, H.R. A Critical Review of the Properties of Fusidic Acid and Analytical Methods for Its Determination. Crit. Rev. Anal. Chem. 2016, 46, 352–360. [Google Scholar] [CrossRef]
- Zelmer, A.R.; Nelson, R.; Richter, K.; Atkins, G.J. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res. 2022, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Hajikhani, B.; Goudarzi, M.; Kakavandi, S.; Amini, S.; Zamani, S.; van Belkum, A.; Goudarzi, H.; Dadashi, M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2021, 10, 75. [Google Scholar] [CrossRef]
- Ayyub, S.A.; Lahry, K.; Dobriyal, D.; Mondal, S.; Varshney, U. Antimicrobial activity of fusidic acid in Escherichia coli is dependent on the relative levels of ribosome recycling factor and elongation factor G. FEMS Microbiol. Lett. 2018, 365, fny133. [Google Scholar] [CrossRef]
- Belardinelli, R.; Rodnina, M.V. Effect of Fusidic Acid on the Kinetics of Molecular Motions During EF-G-Induced Translocation on the Ribosome. Sci. Rep. 2017, 7, 10536. [Google Scholar] [CrossRef]
- Liu, J.; Lai, X.; Li, Y.; Yu, Z.; Wang, X.; Zhang, C.; Peng, Q. Reversing the Natural Drug Resistance of Gram-Negative Bacteria to Fusidic Acid via Forming Drug-Phospholipid Complex. Bioengineering 2024, 11, 177. [Google Scholar] [CrossRef]
- Falck, E.; Hautala, J.T.; Karttunen, M.; Kinnunen, P.K.; Patra, M.; Saaren-Seppälä, H.; Vattulainen, I.; Wiedmer, S.K.; Holopainen, J.M. Interaction of fusidic acid with lipid membranes: Implications to the mechanism of antibiotic activity. Biophys. J. 2006, 91, 1787–1799. [Google Scholar] [CrossRef]
- Helle, A.; Mäkitalo, J.; Huhtanen, J.; Holopainen, J.M.; Wiedmer, S.K. Antibiotic fusidic acid has strong interactions with negatively charged lipid membranes: An electrokinetic capillary chromatographic study. Biochim. Et Biophys. Acta 2008, 1778, 2640–2647. [Google Scholar] [CrossRef]
- Jepsen, K.; Falk, W.; Brune, F.; Fimmers, R.; Jepsen, S.; Bekeredjian-Ding, I. Prevalence and antibiotic susceptibility trends of periodontal pathogens in the subgingival microbiota of German periodontitis patients: A retrospective surveillance study. J. Clin. Periodontol. 2021, 48, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Jousimies-Somer, H.; Asikainen, S.; Suomala, P.; Summanen, P. Activity of metronidazole and its hydroxy metabolite against clinical isolates of Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 1988, 3, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Pavicić, M.J.; van Winkelhoff, A.J.; de Graaff, J. Synergistic effects between amoxicillin, metronidazole, and the hydroxymetabolite of metronidazole against Actinobacillus actinomycetemcomitans. Antimicrob. Agents Chemother. 1991, 35, 961–966. [Google Scholar] [CrossRef]
- Szultka-Mlynska, M.; Buszewski, B. Study of in-vitro metabolism of selected antibiotic drugs in human liver microsomes by liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 8273–8287. [Google Scholar] [CrossRef] [PubMed]
- Bako, J.; Toth, F.; Gall, J.; Kovacs, R.; Csík, A.; Varga, I.; Sculean, A.; Zelko, R.; Hegedus, C. Combined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocomposite Hydrogels for Periodontitis Treatment. Pharmaceutics 2022, 14, 957. [Google Scholar] [CrossRef]
- Bastos, M.D.R.; Dotta, T.C.; Kubata, B.R.; Nascimento, C.D.; Macedo, A.P.; Figueiredo, F.A.T.; Rocha, M.M.; Peixoto, M.P.G.; Ferreira, M.P.; Freitas, O.; et al. Metronidazole Modified-Release Therapy Using Two Different Polymeric Systems Gels or Films: Clinical Study for the Treatment of Periodontitis. Pharmaceutics 2024, 16, 1108. [Google Scholar] [CrossRef]
- Brako, F.; Luo, C.; Matharu, R.K.; Ciric, L.; Harker, A.; Edirisinghe, M.; Craig, D.Q.M. A Portable Device for the Generation of Drug-Loaded Three-Compartmental Fibers Containing Metronidazole and Iodine for Topical Application. Pharmaceutics 2020, 12, 373. [Google Scholar] [CrossRef]
- Léber, A.; Budai-Szűcs, M.; Urbán, E.; Vályi, P.; Gácsi, A.; Berkó, S.; Kovács, A.; Csányi, E. Combination of Zinc Hyaluronate and Metronidazole in a Lipid-Based Drug Delivery System for the Treatment of Periodontitis. Pharmaceutics 2019, 11, 142. [Google Scholar] [CrossRef]
- Sreeharsha, N.; Rajpoot, K.; Tekade, M.; Kalyane, D.; Nair, A.B.; Venugopala, K.N.; Tekade, R.K. Development of Metronidazole Loaded Chitosan Nanoparticles Using QbD Approach-A Novel and Potential Antibacterial Formulation. Pharmaceutics 2020, 12, 920. [Google Scholar] [CrossRef]
- Allison, S.D. Analysis of initial burst in PLGA microparticles. Expert Opin. Drug Deliv. 2008, 5, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Z.; Gu, J.; Zhou, W.; Liang, X.; Zhou, G.; Han, C.C.; Xu, S.; Liu, Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Control Release 2020, 320, 337–346. [Google Scholar] [CrossRef]
- Alzahrani, D.A.; Alsulami, K.A.; Alsulaihem, F.M.; Bakr, A.A.; Booq, R.Y.; Alfahad, A.J.; Aodah, A.H.; Alsudir, S.A.; Fathaddin, A.A.; Alyamani, E.J.; et al. Dual Drug-Loaded Coaxial Nanofiber Dressings for the Treatment of Diabetic Foot Ulcer. Int. J. Nanomed. 2024, 19, 5681–5703. [Google Scholar] [CrossRef]
- Steinberg, D.; Friedman, M.; Soskolne, A.; Sela, M.N. A new degradable controlled release device for treatment of periodontal disease: In vitro release study. J. Periodontol. 1990, 61, 393–398. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, S.; Li, Z.; Xu, J.; Liu, Y.; Luo, E. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models. Mater. Today Bio 2022, 16, 100438. [Google Scholar] [CrossRef] [PubMed]
- Vijayalashmi, R.; Ravindranath, S.M.; Jayakumar, N.D.; Padmalatha; Vargheese, S.H.; Kumaraswamy, K.L. Kinetics of drug release from a biodegradable local drug delivery system and its effect on Porphyromonas gingivalis isolates: An in vitro study. J. Indian Soc. Periodontol. 2013, 17, 429–434. [Google Scholar] [CrossRef]
- Gilchrist, S.E.; Lange, D.; Letchford, K.; Bach, H.; Fazli, L.; Burt, H.M. Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J. Control. Release 2013, 170, 64–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigusch, B.W.; Reise, M.; Kranz, S.; Beck, J.; Wagner, K.; Guellmar, A.; Heyder, M. Antibacterial Activity of Fusidic Acid-Loaded Electrospun Polylactide Fiber Fleeces Against Periodontopathogenic Species. Pharmaceutics 2025, 17, 821. https://doi.org/10.3390/pharmaceutics17070821
Sigusch BW, Reise M, Kranz S, Beck J, Wagner K, Guellmar A, Heyder M. Antibacterial Activity of Fusidic Acid-Loaded Electrospun Polylactide Fiber Fleeces Against Periodontopathogenic Species. Pharmaceutics. 2025; 17(7):821. https://doi.org/10.3390/pharmaceutics17070821
Chicago/Turabian StyleSigusch, Bernd W., Markus Reise, Stefan Kranz, Julius Beck, Kerstin Wagner, André Guellmar, and Markus Heyder. 2025. "Antibacterial Activity of Fusidic Acid-Loaded Electrospun Polylactide Fiber Fleeces Against Periodontopathogenic Species" Pharmaceutics 17, no. 7: 821. https://doi.org/10.3390/pharmaceutics17070821
APA StyleSigusch, B. W., Reise, M., Kranz, S., Beck, J., Wagner, K., Guellmar, A., & Heyder, M. (2025). Antibacterial Activity of Fusidic Acid-Loaded Electrospun Polylactide Fiber Fleeces Against Periodontopathogenic Species. Pharmaceutics, 17(7), 821. https://doi.org/10.3390/pharmaceutics17070821