Next-Generation Cancer Treatment: Photoimmunotherapy’s Promise for Unresectable Head and Neck Cancers
Abstract
:1. Introduction
2. Brief History of PIT and Its Links to Current Immunotherapy
Action/ Target | Generic Name | Chemical Formula | Brand Label | Year of Approval | Initial Treated Cancer | References |
---|---|---|---|---|---|---|
CTLA-4 | Ipilimumab | C6742H9972N1732O2004S40 | Yervoy | 25 March 2011 | Advanced melanoma that has metastasized or cannot be surgically removed. | Ref. [33] |
CTLA-4 | Tremelimumab | C6500H9974N1726O2026S52 | Imjudo | October 2022 | Coupled with Durvalumab for the treatment of hepatocellular carcinoma. | Ref. [34] |
PD-1 | Pembrolizumab | C6504H10004N1716O2036S46 | Keytruda | 4 September 2014 | Metastatic malignant melanoma. | Ref. [35] |
PD-1 | Nivolumab | C6362H9862N1712O1995S42 | Opdivo | 22 December 2014 | Therapeutic area: Melanoma; Non-small cell lung cancer; Small cell lung cancer; Malignant pleural mesothelioma; Renal cell carcinoma; Hodgkin lymphoma; Squamous cell carcinoma (SCC) of the head and neck; Urothelial carcinoma; Colorectal cancer (MSI-H or dMMR); Hepatocellular carcinoma; Esophageal squamous cell carcinoma (ESCC); Gastric cancer; Esophageal adenocarcinoma. | Ref. [36] |
PD-1 | Cemiplimab | C6380H9808N1688O2000S44 | Libtayo | 28 September 2018 | Treatment of advanced cutaneous squamous cell carcinoma (CSCC). | Ref. [37] |
PD-1 | Dostarlimab | C6420H9832N1680O2014S44 | Jemperli | April 2021 | Accelerated approval for the treatment of recurrent or advanced mismatch repair deficient (dMMR) endometrial cancer that is progressing despite treatment with platinum-containing chemotherapy regimens. | Ref. [38] |
PD-1 | Retifanlimab | C6456H9934N1702O2032S46 | Zynyz | March 2023 | Accelerated approval for metastatic or recurrent locally advanced Merkel cell carcinoma (MCC). | Ref. [39] |
PD-1 | Toripalimab | C6548H10104N1728O2054S44 | Loqtorzi | October 2023 | Treatment of selected patients with nasopharyngeal carcinomas. | Ref. [40] Ref. [41] |
PD-1 | Tislelizumab | C6410H9916N1686O2009S40 | Tevimbra® (tislelizumab-jsgr). | 4 March 2025 | In combination with platinum-containing chemotherapy, for the first-line treatment of adults with unresectable or metastatic ESCC, whose tumors express PD-L1 (≥1). The structure of tislelizumab has been modified to maximally inhibit the binding of PD-1 to programmed death ligand 1 (PD-L1). | Ref. [42] Ref. [43] Ref. [44] |
PD-L1 | Atezolizumab | C6446H9902N1706O1998S42 | Tecentriq, Tecentriq Hybreza | 18 October 2016 | Patients with tumors that express PD-L1 and cannot receive platinum-based chemotherapy or do not respond to this therapy. In November 2022, the manufacturer (Genentech) voluntarily withdrew the use of Atezolizumab only for the urothelial carcinoma. Rest of indications remain unaffected: Non-small cell lung cancer; Breast cancer (PD-L1 expressed, HR negative, HER2 negative); Small cell lung cancer; Hepatocellular carcinoma. | Ref. [45] Ref. [46] |
PD-L1 | Avelumab | C6374H9898N1694O2010S44 | Bavencio | 23 March 2017 | Merkel cell carcinoma, metastatic urothelial carcinoma, or renal cell carcinoma. | Ref. [47] |
PD-L1 | Durvalumab | C6502H10018N1742O2024S42 | Imfinzi | 27 March 2020 | Combined with Etoposide and either Carboplatin or Cisplatin as first-line treatment for extensive-stage small cell lung cancer (ES-SCLC). | Ref. [48] |
PD-L1 | Cosibelimab; Cosibelimab-ipdl; | C6388H9912N1716O2032S44 | Unloxcyt | 13 December 2024 | For patients with metastatic cutaneous squamous cell carcinoma (mCSCC) or locally advanced CSCC (laCSCC) who are not candidates for curative surgery or radiation. | Ref. [49] Ref. [50] |
LAG-3 | Nivolumab and Relatlimab; Nivolumab and Relatlimab-rmbw. | C6462H9990N1714O2074S42 and C6584H10106N1718O2102S38 | Opdualag | March 2022 | Nivolumab and Relatlimab (Opdualag) is indicated as first-line treatment of advanced (unresectable or metastatic) melanoma in people aged 12 years and older. | Ref. [51] Ref. [52] Ref. [53] Ref. [54] |
3. Basics of Near-Infrared Photoimmunotherapy and Clinical Studies
3.1. Fundamental Mechanisms of Near-Infrared Photoimmunotherapy
3.2. Applications of NIR-PIT in Clinical Trials on Human Head and Neck Cancers
References | No. Study | Study Start/Completion (year) | Phase | No. Patients | Treatments | Types of Cancers | Results |
---|---|---|---|---|---|---|---|
Ref. [96] | NCT02422979 | 2015-06 2019-02-25 | 1/2a | 39 | PIT + RM-1929 | Recurrent Head and Neck Cancer (rHNC) | Well-tolerated therapy with valuable clinical response. |
Ref. [97] | NCT02422979 | 2015–2017 | 1 | 9 | PIT + RM-1929 | rHNC | NIR-PIT with well-tolerated RM1929 and improved clinical data |
Ref. [98] | NCT02422979 | 2015–2017 | 2a | 30 | RM-1929 + PIT superficially and deep intratumorally | rHNC | No local or systemic adverse reactions and clinical parameters were significantly improved. |
Ref. [99] | NCT02422979 | 2019 | 2a | 30 | RM-1929 + PIT superficially and deep intratumorally | rHNC | RM-1929—PIT was well tolerated, with most AEs being mild to moderate in severity. |
Ref. [100] | NCT02422979 | 2015-06 2019-02-25 | 1/2a | 39 | PIT + RM-1929 | rHNC | Well-tolerated therapy with valuable clinical response |
Ref. [101] | NCT03769506 | 2019-05-09 2025-12 (estimated study completion) | 3 | 135 | PIT + RM-1929 + drug chosen by the physician: docetaxel, cetuximab, methotrexate, paclitaxel | rHNC | Active study |
Ref. [102] | NCT04305795 | 2020-12-21 2027-06 (estimated study completion) | 1 and 2 | 23 | PIT + ASP-1929 + combination with anti-PD1 therapy | rHNSCC or (m)HNSCC or laCSCC mCSCC | Active study |
Ref. [103] | NCT04305795 | 2023 | 1b/2 | 18 | PIT + ASP-1929 + combination with anti-PD1 therapy | rHNSCC or (m)HNSCC or laCSCC or mCSCC | Preliminary data. Well tolerated therapy; promising survival rates. |
Ref. [104] | NCT05220748 | 2022-03-24 2023-01-30 | 1 | 0 | RM-1995 + biological Pembrolizumab | CSCC or HNSCC | withdrawn |
Ref. [105] | NCT05265013 | 2022-04-19 2024-03-29 | 2 | 16 | PIT + ASP-1929 + biological Pembrolizumab | HNC | Study Completed |
Ref. [106] | NCT05182866 | 2022-01-21 2026-06-30 (estimated study completion) | 2 | 9 | PIT + ASP-1929 | HNC and HNSCC | Active |
3.3. NIR-PIT in Unresectable, Locally Advanced or Locally Recurrent Head and Neck Cancers—Case Series
3.3.1. PIT in Locally Recurrent Nasopharyngeal Carcinoma
3.3.2. Preventive Tracheostomy Prior to NIR-PIT for Oropharyngeal Cancer
3.3.3. PIT in Unresectable Recurrent Maxillary Sinus Cancer
3.3.4. PIT in Locally Recurrent Nasopharyngeal Squamous Cell Carcinoma, Positive for Epstein-Barr Virus
3.3.5. Post-Illumination Pain in Photoimmunotherapy Applied to Head and Neck Cancers
3.3.6. Eligibility for Photoimmunotherapy in Head and Neck Cancers
3.3.7. Immunogenic Cell Death and Changes in Serum DAMPs and Cytokines/Chemokines During NIR-PIT
3.3.8. NIR-PIT Combined with ICI Therapy for Unresectable rHNC Could Improve the Anticancer Effects
3.3.9. Emergency Tracheostomy After Head and Neck Photoimmunotherapy
3.3.10. Preoperative Simulation and NIR-PIT Illumination with HMD-MR Technology
3.3.11. Lemierre’s Syndrome, a Rare Complication of NIR-PIT
References | Study Characteristics | Type of Cancer | No. Patients | Drugs | PIT Laser Protocol | Efficacity | Adverse Events (AEs) |
---|---|---|---|---|---|---|---|
Ref. [109] | Single-center, open-label, phase I study. | rHNSCC | 3 | RM-1929 640 mg/m2 (cetuximab sarotalocan) Cetuximab-IR700DX conjugate; Light-activatable dye (IRDye 700DX). | 50 J/cm2 superficial illumination. 100 J/cm fiber diffuser length for interstitial illumination. Approximately 5 min for each treated region. Class IV laser precautions were required for delivery of illumination. | Significant clinical response and good safety. | AEs were mild to moderate and transient grade 3 for application site pain. |
Ref. [110] | Case report | Locally recurrent nasopharyngeal carcinoma | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT | Cylindrical diffuser and frontal diffusers. Light irradiation using a laser (form Rakuten Medical, Tokyo, Japan). | Complete response to PIT | None. |
Ref. [114] | Review and two case reports | HNC Case 1: Left oropharyngeal tumor. Case 2: Cancer of the base of tongue. | 2 | Day 1: Intravenous administration of RM-1929 at a dose of 640 mg/m2 by intravenous infusion over 2 h. + NIR-PIT | Day 2: Tracheostomy before laser illumination. Laser illumination was performed with BioBlade® laser system (Rakuten Medical, Inc., San Diego, CA, USA). For deep lesions or thick lesions, 20 mm length cylindrical diffusers were used, and for superficial lesions, a frontal diffuser was used. | Good results without functional complications. | without serious side effects. |
Ref. [116] | Case report | Recurrent laryngeal squamous cell carcinoma | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT | Laser irradiation using cylindrical diffusers and a PDT semiconductor laser (Rakuten Medical). Irradiation time: First session, 8 min and 20 s. Second session (6 weeks after the first), 9 min and 43 s. | PIT response was considered partial after the first session. | Grade 2 acne-like skin rash. |
Ref. [117] | Case report | Maxillary gingival carcinoma with a recurrent lesion deep in the lateral pterygoid muscle. | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT with 690 nm red light illumination. | PDT with semiconductor laser (BioBrade® laser) and PDT with semiconductor laser probes (BioBrade® cylindrical diffuser, BioBrade® frontal diffuser, and BioBrade® needle catheter; Rakuten Medical, Tokyo, Japan). Intra-tissue irradiation: cylindrical laser beam with a radius of 10 mm Irradiation time was 9 min and 43 s. | Complete response. | None. |
Ref. [118] | Evaluation of the quality of life of 9 patients with LA-HNC or LR-HNC | Unresectable locally advanced or locally recurrent head and neck carcinoma | 9 | Cetuximab sarotalocan sodium (640 mg/m2) + HN-PIT | Optimal laser light intensity was 50 J/cm2 for superficial lesions, and 100 J/cm for deep lesions. | HN-PIT may prolong overall survival. The safety profile was satisfactory, with a positive response rate of 89%. | Mucositis (89%); Edema of the larynx (33%); Hemorrhage (22%); Acneiform rash (11%). |
Ref. [119] | Two case reports | Recurrent NPSCC | 2 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT | Case 1: A frontal diffuser (34 mm from the posterior wall) illuminated the whole tumor, for 5 min 33 s. Case 2: Two 100 mm needle catheters were used to perforate the posterior wall, through each nasal cavity, a total of four. A 20 mm cylindrical diffuser was inserted into each catheter and illuminated. A residual tumor was present, and a second PIT was planned. | Case 1: Five weeks postoperatively, the tumor had disappeared completely. Case 2: Patient underwent four PIT sessions, followed by systemic chemotherapy, and survived with cancer 1 year after the first PIT. | Grade 2 adverse reactions: pain, laryngeal edema, and suspected osteomyelitis. |
Ref. [125] | Case report | Maxillary sinus cancer (rHNC) | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + CT-guided PIT with surgical navigation | 1 h and 52 min | Tumor necrosis and volume decreased. CT guidance has helped maximize the safety and efficacy of PIT for rHNC. | Pain |
Ref. [126] | Case report | Locally recurrent NPSCC | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + HNC-PIT assisted by transnasal endoscopy | Laser illumination was for 5 min and 33 s. | Patient without recurrence or adverse events | Hypoxia during the intravenous administration of Cetuximab. |
[127] | Retrospective study. A Case Series. | HNSCC | 5 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT | 5 min for each treated area. | Pain: first day immediately after, or at one-hour post-PIT illumination (mean scores 6.8–7.8 for the frontal and cylindrical illumination). | Acute and transitory pain. A plan for postoperative pain management is needed in PIT. |
[128] | Retrospective study | Unresectable advanced or recurrent HNC | 246 | Cetuximab sarotalocan sodium and the BioBlade laser system. The tumor was illuminated with laser light (690 nm) on day 2, resulting in tumor necrosis. Cylindrical diffusers in needle catheters for subcutaneous (submucosal) lesions and a front diffuser for superficial lesions. | HN-PIT evoked before, during, and after systemic therapy. | In patients with relapsed metastatic HNSCC, HN-PIT is a promising alternative because incurable locoregional disease remains a strongly adverse prognostic factor. HN-PIT should be considered as a treatment option before systemic chemotherapy, so as not to miss the right moment for treatment. | Some immune-related adverse events induced by systemic therapy. 50% of eligible patients became ineligible for HN-PIT due to disease progression after systemic therapy. |
Ref. [130] | Brief communication | HNSCC | 5 | Cetuximab sarotalocan sodium (640 mg/m2) + NIR-PIT | Seven sessions of NIR-PIT. | DAMPs and serum cytokine/chemokine levels were increased after NIR-PIT. Baseline NLR may predict patient outcomes in response to NIR-PIT. | Grade 4 laryngeal edema; fistula. Pain and edema in all patients. |
Ref. [131] | Case report | Local recurrent mandibular gingival cancer (HNC) | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT + ICI therapy with Pembrolizumab. | Cycle 1: 4 spots with a 20 mm cylindrical diffuser, and a frontal diffuser (30 mm diameter). Cycle 2: Residual superficial lesions were irradiated at 4 locations with the same frontal diffuser. Cycle 3: Residual lesions were irradiated at 6 locations using 40 mm and 20 mm cylindrical diffusers, and the superficial lesions at 2 locations using frontal diffusers (38 mm spot diameters). | ICI could be successfully administered in cases with advanced disease, after HN-PIT. The patient remained in clinical remission 1 year after therapy. | ICI can be effective after HN-PIT with no AEs. |
Ref. [132] | Feasibility study | Unresectable rHNSCC | 5 | Cetuximab sarotalocan sodium (640 mg/m2) followed by NIR-PIT + ICI therapy with Pembrolizumab. | Tumors over 10 mm thick were illuminated with a cylindrical diffuser (laser light over a 15 mm radius), and superficial ones up to 10 mm with a frontal diffuser. Best observed response rate was 100%. Of the total of 7 targeted lesions: 3 complete responses, and 4 partial responses. | Combining NIR-PIT and ICI therapy is safe and effective as a promising master plan for locally incurable advanced or recurrent HNSCC. NIR-PIT with Pembrolizumab has proven effective and safe. | Grade 1 or 2 pain in all patients for 1–2 days postoperatively. Grade 3 pneumonia, pharyngeal skin fistula, and trismus in 42.9% of cases. |
Ref. [137] | Case Report | Local recurrent maxillary sinus cancer | 1 | NIR-PIT + Pembrolizumab. Second-line chemotherapy with: Cetuximab, Paclitaxel, and Carboplatin, followed by Nivolumab. | 4 NIR-PIT sessions | NIR-PIT is a potential stimulator of host anticancer immunity, ICI efficacity, and circumvention of ICI resistance. | Fistula between the maxillary sinus and the skin. |
Ref. [138] | Case reports | rHNSCC Case 1: local recurrence of mandibular gingival carcinoma. Case 2: carcinoma of the mid-pharynx. | 2 cases with severe laryngeal edema post HN-PIT | Cetuximab sarotalocan sodium (640 mg/m2) + HN-PIT | Cylindrical diffuser illuminated the tissue with a 10 mm radius and 100 J/cm; the energy density for frontal diffuser was 50 J/cm2, with a distributed depth of <10 mm. | During HN-PIT therapy, patients may go through several stages, one of which is laryngeal edema, for which an emergency tracheostomy was performed. | Two cases of laryngeal edema with emergency tracheostomy. |
Ref. [141] | Case report and Review | Locoregionally recurrent oropharyngeal SCC at tongue base. | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + NIR-PIT | Laser illumination for 5 min with four cylindrical diffusers. | Success of NIR-PIT without post-operative dysfunction in a case of locoregionally recurrent oropharyngeal cancer refractory to chemoradiotherapy. | Severe mucosal edema from the epiglottis to the tongue base and grade 3 or higher pain. A prophylactic tracheostomy was performed under general anesthesia. |
Ref. [145] | Case report | Nasopharyngeal carcinoma (SCC, cT1N0M0, Stage I) | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + PIT | Transoral laser illumination with a 20 mm frontal diffuser. | Acute respiratory failure can be life-threatening and should be considered as a potential adverse effect of PIT. | Laryngeal edema required emergency tracheostomy. |
Ref. [156] | Case report | Recurrent oropharyngeal cancer. Patient with compromised general health. | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + 2 NIR-PIT sessions, using HMD-MR technology. | From CT and FDG-PET/CT images, a customized 3D HN model specific to the patient was generated. Four needle catheters were inserted into the tumor, and this was illuminated through the cylindrical diffusers. | First application of HMD-MR technology, which optimized the NIR-PIT effect. | Grade 1 local pain and mild pharyngeal edema (which disappeared within 7 days). |
Ref. [162] | Case report | Nasopharynx SCC, stage III | 1 | Cetuximab sarotalocan sodium (640 mg/m2) + HN-PIT with 690 mm laser light to specifically damage tumor cell membranes + post-antibiotic therapy | Cylindrical diffusers were inserted into the tumor | Tumor has shrunk. | Postoperative mucositis and Lemierre’s syndrome (pathology with high mortality rate). |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACT | adoptive cell therapies |
AEs | adverse events |
Ag(s) | antigen(s) |
APC | antibody–photoabsorber conjugate |
AR | augmented reality |
ASCO | American Society of Clinical Oncology |
ASP-1929 (RM-1929) | cetuximab sarotalocan or cetuximab-IRDye 700DX conjugate or Akalux |
ATP | adenosine triphosphate |
CAR-T cell | chimeric antigen receptor transduced T cell |
COVID-19 | Coronavirus disease 2019 |
CRT | calreticulin |
CSCC | cutaneous squamous cell carcinoma |
CT | computed tomography |
CTLA-4 | cytotoxic T-lymphocyte associated antigen 4 |
DAMPs | damage-associated molecular patterns |
DC | dendritic cell |
DCs | dendritic cells |
DDSs | drug delivery systems |
DICOM | Digital Imaging and Communications in Medicine |
EGFR | epidermal growth factor receptor |
EPR | enhanced permeability and retention |
ESCC | esophageal squamous cell carcinoma |
FDA | U.S. Food and Drug Administration |
FDG-PET | 18-Fluoro-deoxyglucose positron emission tomography |
FDG-PET/CT | CT and 18-Fluoro-deoxyglucose positron emission tomography |
HMD | head-mounted display |
HMGB1 | high-mobility group box 1 protein |
HNC | head and neck cancer |
HNCs | head and neck cancers |
HN-PIT | head and neck photoimmunotherapy |
HNC-PIT | photoimmunotherapy for head and neck cancer |
HNSCC | head and neck squamous cell carcinoma |
HPV | Human Papilloma Virus |
Hsp70/Hsp90 | heat shock proteins 70 and 90 |
ICB | immune checkpoint blockade |
ICD | immunogenic cell death |
ICI | immune checkpoint inhibitor |
ICIs | immune checkpoint inhibitors |
irAEs | immune-related adverse events |
IR700 | phthalocyanine dye IRDye 700DX |
I.V. | intravenous |
laCSCC | locally advanced CSCC |
LAG-3 | lymphocyte activation gene-3 |
LA/LR-HNC | locally advanced or locally recurrent head and neck carcinoma |
LS | Lemierre’s syndrome |
lx | lux (luminous flux) |
mAb | monoclonal antibody |
mCSCC | metastatic cutaneous squamous cell carcinoma |
MDSCs | myeloid-derived suppressor cells |
mHNSCC | metastatic head and neck squamous cell carcinoma |
MIP-1α/CCL3 | macrophage inflammatory protein 1 alpha |
MIP-1β/CCL4 | macrophage inflammatory protein 1 beta |
MR | mixed reality |
MRI | magnetic resonance imaging |
NCBI | National Center for Biotechnology Information |
NIR | near-infrared |
NIR-PIT | near-infrared photoimmunotherapy |
NLM | National Library of Medicine |
NLR | neutrophil-to-lymphocyte ratio |
NPSCC | nasopharyngeal squamous cell carcinoma |
1O2 | singlet oxygen |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death ligand 1 |
PD-L2 | programmed cell death ligand 2 |
PDT | photodynamic therapy |
PET | positron emission tomography |
PIT | photoimmunotherapy |
PSs | photosensitizers |
PTT | photothermal therapy |
rHNC | recurrent head and neck cancer |
rHNSCC | recurrent head and neck squamous cell carcinoma |
rLA | recurrent locally advanced |
r/m | recurrent/metastatic |
ROS | reactive oxygen species |
SCC | squamous cell carcinoma |
STL | stereolithography |
SUPR | super-enhanced permeability and retention |
TAMs | tumor-associated M2 macrophages |
TCA | tricarboxylic acid cycle |
TIME | tumor immune microenvironment |
TME | tumor microenvironment |
Tregs | regulatory T lymphocytes |
US | United States |
VR | virtual reality |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. Cancer Stat. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Cronin, K.A.; Scott, S.; Firth, A.U.; Sung, H.; Henley, S.J.; Sherman, R.L.; Siegel, R.L.; Anderson, R.N.; Kohler, B.A.; Benard, V.B.; et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 2022, 128, 4251–4284. [Google Scholar] [CrossRef] [PubMed]
- Huhulea, E.N.; Huang, L.; Eng, S.; Sumawi, B.; Huang, A.; Aifuwa, E.; Hirani, R.; Tiwari, R.K.; Etienne, M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines 2025, 13, 951. [Google Scholar] [CrossRef]
- Ghoreyshi, N.; Heidari, R.; Farhadi, A.; Chamanara, M.; Farahani, N.; Vahidi, M.; Behroozi, J. Next-generation sequencing in cancer diagnosis and treatment: Clinical applications and future directions. Discov. Oncol. 2025, 16, 578. [Google Scholar] [CrossRef]
- Sathyanarayanan, V.; Neelapu, S.S. Cancer immunotherapy: Strategies for personalization and combinatorial approaches. Mol. Oncol. 2015, 9, 2043–2053. [Google Scholar] [CrossRef] [PubMed]
- Kato, D.; Yaguchi, T.; Iwata, T.; Morii, K.; Nakagawa, T.; Nishimura, R.; Kawakami, Y. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies. Nihon Rinsho Meneki Gakkai Kaishi 2017, 40, 68–77. [Google Scholar] [CrossRef]
- Martinez, M.; Moon, E.K. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front. Immunol. 2019, 10, 128. [Google Scholar] [CrossRef]
- Sharma, P.; Siddiqui, B.A.; Anandhan, S.; Yadav, S.S.; Subudhi, S.K.; Gao, J.; Goswami, S.; Allison, J.P. The Next Decade of Immune Checkpoint Therapy. Cancer Discov. 2021, 11, 838–857. [Google Scholar] [CrossRef]
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
- El-Kadiry, A.E.; Rafei, M.; Shammaa, R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front. Med. 2021, 8, 756029. [Google Scholar] [CrossRef]
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy-current perspectives and future directions. Cell 2023, 1868, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Maiti, R.; Mohan, P.; Gupta, P. Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur. J. Haematol. 2024, 112, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Aebisher, D.; Czech, S.; Dynarowicz, K.; Misiołek, M.; Komosińska-Vassev, K.; Kawczyk-Krupka, A.; Bartusik-Aebisher, D. Photodynamic Therapy: Past, Current, and Future. Int. J. Mol. Sci. 2024, 25, 11325. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, M.; Liu, Z.; Wu, C.; Pan, X.; Huang, Z.; Lu, C.; Quan, G. Photodynamic therapy for cancer: Mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm 2024, 5, e603. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Fighting Cancer with Photodynamic Therapy and Nanotechnologies: Current Challenges and Future Directions. Int. J. Mol. Sci. 2025, 26, 2969. [Google Scholar] [CrossRef]
- Mohiuddin, T.M.; Zhang, C.; Sheng, W.; Al-Rawe, M.; Zeppernick, F.; Meinhold-Heerlein, I.; Hussain, A.F. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 2655. [Google Scholar] [CrossRef]
- Mew, D.; Wat, C.K.; Towers, G.H.; Levy, J.G. Photoimmunotherapy: Treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J. Immunol. 1983, 130, 1473–1477. [Google Scholar] [CrossRef]
- Goff, B.A.; Bamberg, M.; Hasan, T. Photoimmunotherapy of human ovarian carcinoma cells ex vivo. Cancer Res. 1991, 51, 4762–4767. [Google Scholar] [PubMed]
- Duska, L.R.; Hamblin, M.R.; Miller, J.L.; Hasan, T. Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo. J. Natl. Cancer Inst. 1999, 91, 1557–1563. [Google Scholar] [CrossRef]
- Molpus, K.L.; Hamblin, M.R.; Rizvi, I.; Hasan, T. Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol. Oncol. 2000, 76, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Turkbey, B.; Pinto, P.A.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers 2022, 14, 2996. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Sato, N.; Xu, B.; Nakamura, Y.; Nagaya, T.; Choyke, P.L.; Hasegawa, Y.; Kobayashi, H. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci. Transl. Med. 2016, 8, 352ra110. [Google Scholar] [CrossRef]
- Syn, N.L.; Teng, M.W.; Mok, T.S.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017, 18, e731–e741. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.P.; Ming, L.C.; Dhaliwal, J.S.; Gupta, M.; Ardianto, C.; Goh, K.W.; Hussain, Z.; Shafqat, N. Role of Immunotherapy in the Treatment of Cancer: A Systematic Review. Cancers 2022, 14, 5205. [Google Scholar] [CrossRef]
- Wang, X.; Teng, F.; Kong, L.; Yu, J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 2016, 9, 5023–5039. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Jin, S.; Gao, Z.; Cao, J.; Wang, A.; Li, D.; Wang, Q.; Sun, X.; Bai, D. Progress of immune checkpoint therapy in the clinic (Review). Oncol. Rep. 2019, 41, 3–14. [Google Scholar] [CrossRef]
- Liu, X.; Guo, C.Y.; Tou, F.F.; Wen, X.M.; Kuang, Y.K.; Zhu, Q.; Hu, H. Association of PD-L1 expression status with the efficacy of PD-1/PD-L1 inhibitors and overall survival in solid tumours: A systematic review and meta-analysis. Int. J. Cancer 2020, 147, 116–127. [Google Scholar] [CrossRef]
- Sahu, M.; Suryawanshi, H. Immunotherapy: The future of cancer treatment. J. Oral Maxillofac. Pathol. 2021, 25, 371. [Google Scholar] [CrossRef]
- The American Association for Cancer Research (AACR). Cancer Progress Report 2023. Spotlight on Immunotherapy: Pushing the Frontier of Cancer Medicine. Available online: https://cancerprogressreport.aacr.org/progress/cpr23-contents/cpr23-spotlight-on-immunotherapy-pushing-the-frontier-of-cancer-medicine/ (accessed on 6 April 2025).
- Yervoy FDA Approval History. Available online: https://www.drugs.com/history/yervoy.html (accessed on 6 April 2025).
- Tremelimumab. DrugBank. Available online: https://go.drugbank.com/drugs/DB11771 (accessed on 6 April 2025).
- Pembrolizumab. DrugBank. Available online: https://go.drugbank.com/drugs/DB09037 (accessed on 6 April 2025).
- KEGG DRUG Database. DRUG: Nivolumab. Available online: https://www.kegg.jp/entry/D10316 (accessed on 6 April 2025).
- Cemiplimab. DrugBank. Available online: https://go.drugbank.com/drugs/DB14707 (accessed on 6 April 2025).
- Dostarlimab. DrugBank. Available online: https://go.drugbank.com/drugs/DB15627 (accessed on 6 April 2025).
- Retifanlimab. DrugBank. Available online: https://go.drugbank.com/drugs/DB15766 (accessed on 6 April 2025).
- Toripalimab. DrugBank. Available online: https://go.drugbank.com/drugs/DB15043 (accessed on 6 April 2025).
- KEGG DRUG Database. DRUG: Toripalimab. Available online: https://www.kegg.jp/entry/D12202 (accessed on 6 April 2025).
- TEVIMBRA Approved in U.S. for First-Line Treatment of Advanced Esophageal Squamous Cell Carcinoma in Combination with Chemotherapy. BeiGene, Ltd. Available online: https://ir.beigene.com/news/tevimbra-approved-in-u-s-for-first-line-treatment-of-advanced-esophageal-squamous-cell-carcinoma-in-combination/8379a7c3-35ce-45af-82d3-164c64ecf37c/ (accessed on 6 April 2025).
- DRUG: Tislelizumab. KEGG. Available online: https://www.kegg.jp/entry/D11487 (accessed on 6 April 2025).
- Zhang, L.; Geng, Z.; Hao, B.; Geng, Q. Tislelizumab: A Modified Anti-tumor Programmed Death Receptor 1 Antibody. Cancer Control. 2022, 29, 10732748221111296. [Google Scholar] [CrossRef] [PubMed]
- Atezolizumab. DrugBank. Available online: https://go.drugbank.com/drugs/DB11595 (accessed on 6 April 2025).
- DRUG: Atezolizumab. KEGG. Available online: https://www.kegg.jp/entry/D10773 (accessed on 6 April 2025).
- Avelumab. DrugBank. Available online: https://go.drugbank.com/drugs/DB11945 (accessed on 6 April 2025).
- Durvalumab. DrugBank. Available online: https://go.drugbank.com/drugs/DB11714 (accessed on 6 April 2025).
- FDA Approves Cosibelimab-Ipdl for Metastatic or Locally Advanced Cutaneous Squamous Cell Carcinoma. U.S. Food and Drug Administration (FDA). Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-cosibelimab-ipdl-metastatic-or-locally-advanced-cutaneous-squamous-cell-carcinoma (accessed on 6 April 2025).
- Cosibelimab. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Cosibelimab (accessed on 6 April 2025).
- DRUG: Nivolumab and Relatlimab. KEGG. Available online: https://www.kegg.jp/entry/D12334 (accessed on 6 April 2025).
- Nivolumab/Relatlimab. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Nivolumab/relatlimab (accessed on 6 April 2025).
- Opdualag Becomes First FDA-Approved Immunotherapy to Target LAG-3. National Cancer Institute (NCI). 6 April 2022. Available online: https://www.cancer.gov/news-events/cancer-currents-blog/2022/fda-opdualag-melanoma-lag-3 (accessed on 6 April 2025).
- Product Monograph Including Patient Medication Information. Pr OpdualagTM Nivolumab and Relatlimab for Injection. Bristol-Myers Squibb Canada Montreal, Canada, SEP 13. 2023. Available online: https://www.bms.com/assets/bms/ca/documents/productmonograph/OPDUALAG_EN_PM.pdf (accessed on 6 April 2025).
- Lu, C.; Tan, Y. Promising Immunotherapy Targets: TIM3, LAG3, and TIGIT Joined the Party. Mol. Ther. Oncol. 2024, 32, 200773. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med. 2020, 9, 8086–8121. [Google Scholar] [CrossRef] [PubMed]
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N.; et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun. Signal. 2022, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Yu, L.; Shangguan, D.; Li, W.; Liu, N.; Chen, Y.; Fu, Y.; Tang, J.; Liao, D. Advances in pharmacokinetics and pharmacodynamics of PD-1/PD-L1 inhibitors. Int. Immunopharmacol. 2023, 115, 109638. [Google Scholar] [CrossRef]
- Marei, H.E.; Hasan, A.; Pozzoli, G.; Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): Potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 2023, 23, 64. [Google Scholar] [CrossRef]
- Zhuang, H.; Cheng, L.; Wang, Y.; Zhang, Y.K.; Zhao, M.F.; Liang, G.D.; Zhang, M.C.; Li, Y.G.; Zhao, J.B.; Gao, Y.N.; et al. Dysbiosis of the Gut Microbiome in Lung Cancer. Front. Cell Infect. Microbiol. 2019, 9, 112. [Google Scholar] [CrossRef]
- Ferreira de Oliveira, J.M.P.; Santos, C.; Fernandes, E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. Phytomedicine 2020, 73, 152887. [Google Scholar] [CrossRef]
- Luo, L.; Lin, C.; Wang, P.; Cao, D.; Lin, Y.; Wang, W.; Zhao, Y.; Shi, Y.; Gao, Z.; Kang, X.; et al. Combined Use of Immune Checkpoint Inhibitors and Phytochemicals as a Novel Therapeutic Strategy against Cancer. J. Cancer 2023, 14, 2315–2328. [Google Scholar] [CrossRef]
- Roszkowski, S. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules 2023, 28, 4080. [Google Scholar] [CrossRef]
- Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhai, B.T.; Fan, Y.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Wang, J.W.; Guo, D.Y. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int. J. Nanomed. 2023, 18, 4275–4311. [Google Scholar] [CrossRef]
- Lucas, J.; Hsieh, T.C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J.M. Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. Int. J. Oncol. 2018, 53, 1469–1480. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Dubbs, S.B. The Latest Cancer Agents and Their Complications. Emerg. Med. Clin. N. Am. 2018, 36, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Nagaya, T.; Nakamura, Y.; Sato, K.; Ogata, F.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. Evaluation of Early Therapeutic Effects after Near-Infrared Photoimmunotherapy (NIR-PIT) Using Luciferase-Luciferin Photon-Counting and Fluorescence Imaging. Mol. Pharm. 2017, 14, 4628–4635. [Google Scholar] [CrossRef]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef]
- Wakiyama, H.; Kato, T.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics 2021, 10, 3135–3151. [Google Scholar] [CrossRef]
- Furusawa, A.; Choyke, P.L.; Kobayashi, H. NIR-PIT: Will it become a standard cancer treatment? Front. Oncol. 2022, 12, 1008162. [Google Scholar] [CrossRef]
- Cetuximab Sarotalocan|ASP-1929|RM-1929. ADC Review. J. Antib.-Drug Conjugates. Available online: https://www.adcreview.com/drugmap/rm-1929/ (accessed on 10 April 2025).
- Kobayashi, H.; Choyke, P.L. The role of interventional radiology and molecular imaging for near infrared photoimmunotherapy. Jpn. J. Radiol. 2024, 42, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Ohler, Z.W.; Householder, D.; Nagaya, T.; Sato, K.; Okuyama, S.; Ogata, F.; Daar, D.; Hoa, T.; Choyke, P.L.; et al. Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Mol. Cancer Ther. 2017, 16, 408–414. [Google Scholar] [CrossRef]
- Miyazaki, N.L.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Review of RM-1929 Near-Infrared Photoimmunotherapy Clinical Efficacy for Unresectable and/or Recurrent Head and Neck Squamous Cell Carcinoma. Cancers 2023, 15, 5117. [Google Scholar] [CrossRef] [PubMed]
- Rakuten Medical Press Releases. Rakuten Medical Announces First Patient Treatment in India in Global Phase 3 Trial of Alluminox Treatment (Photoimmunotherapy) Using ASP-1929 for Recurrent Head and Neck Cancer. 22 January 2024. Available online: https://rakuten-med.com/us/news/press-releases/2024/01/22/7788/ (accessed on 14 February 2025).
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus? Int. J. Mol. Sci. 2023, 24, 8308. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xu, Y.; Li, Y.; Sun, Y.; Hu, J.; Jia, J.; Li, X. Antibody Drug Conjugates of Near-Infrared Photoimmunotherapy (NIR-PIT) in Breast Cancers. Technol. Cancer Res. Treat. 2023, 22, 15330338221145992. [Google Scholar] [CrossRef]
- Monaco, H.; Yokomizo, S.; Choi, H.S.; Kashiwagi, S. Quickly evolving near-infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. View 2022, 3, 20200110. [Google Scholar] [CrossRef]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model: A demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Molecular cancer therapeutics. Mol. Cancer Ther. 2014, 13, 426–432. [Google Scholar] [CrossRef]
- Kobayashi, H.; Choyke, P.L. Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 2016, 8, 12504–12509. [Google Scholar] [CrossRef]
- Wei, D.; Qi, J.; Hamblin, M.R.; Wen, X.; Jiang, X.; Yang, H. Near-infrared photoimmunotherapy: Design and potential applications for cancer treatment and beyond. Theranostics 2022, 12, 7108–7131. [Google Scholar] [CrossRef]
- Okada, R.; Furusawa, A.; Inagaki, F.; Wakiyama, H.; Kato, T.; Okuyama, S.; Furumoto, H.; Fukushima, H.; Choyke, P.L.; Kobayashi, H. Endoscopic near-infrared photoimmunotherapy in an orthotopic head and neck cancer model. Cancer Sci. 2021, 112, 3041–3049. [Google Scholar] [CrossRef]
- Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers 2022, 13, 2535. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the epidemiology of head and neck cancer: Definitions, trends and risk factors. Br. Dent. J. 2022, 233, 780–786. [Google Scholar] [CrossRef]
- Lim, I.; Tan, J.; Alam, A.; Idrees, M.; Brenan, P.A.; Coletta, R.D.; Kujan, O. Epigenetics in the diagnosis and prognosis of head and neck cancer: A systematic review. J. Oral. Pathol. Med. 2024, 53, 90–106. [Google Scholar] [CrossRef]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Wen, Y.; Wen, J. Head and neck cancer: Pathogenesis and targeted therapy. MedComm 2024, 5, e702. [Google Scholar] [CrossRef]
- EpiCast Report: Head and Neck Cancers—Epidemiology Forecast to 2024. Available online: https://www.globaldata.com/store/report/epicast-report-head-and-neck-cancers-epidemiology-forecast-to-2024/ (accessed on 22 January 2024).
- Lee, B. Head and Neck Cancer Treatment & Pharmacologic Management. Cancer Therapy Advisor, 9 May 2023. Available online: https://www.cancertherapyadvisor.com/ddi/head-and-neck-cancer-treatment/ (accessed on 6 April 2025).
- Rades, D.; Zwaan, I.; Soror, T.; Idel, C.; Pries, R.; Bruchhage, K.L.; Hakim, S.G.; Yu, N.Y. Chemoradiation with Cisplatin vs. Carboplatin for Squamous Cell Carcinoma of the Head and Neck (SCCHN). Cancers 2023, 15, 3278. [Google Scholar] [CrossRef]
- Study of RM-1929 and Photoimmunotherapy in Patients with Recurrent Head and Neck Cancer. ClinicalTrials.gov ID: NCT02422979. Available online: https://clinicaltrials.gov/study/NCT02422979 (accessed on 14 February 2025).
- Kochuparambil, S.T.; McDonald, D.; Fidler, M.; Stenson, K.; Vasan, N.; Razaq, A.M. A phase 1, multicenter, open-label, dose-escalation, combination study of RM-1929 and photoimmunotherapy in patients with recurrent head and neck cancer. 1051PD Abstract Book of the 42nd ESMO Congress (ESMO 2017). Ann. Oncol. 2017, 28, v376. [Google Scholar] [CrossRef]
- Gillenwater, M.A.; Cognetti, D.M.; Johnson, J.M.; Curry, J.; Kochuparambil, S.T.; McDonald, D.; Fidler, M.J.; Stenson, K.; Vasan, N.; Razaq, M.; et al. 2018 ASCO Annual Meeting I, Abstract 6039. RM-1929 photo-immunotherapy in patients with recurrent head and neck cancer: Results of a multicenter phase 2a open-label clinical trial. J. Clin. Oncol. 2018, 36, 6039. [Google Scholar] [CrossRef]
- Cognetti, D.M.; Johnson, J.M.; Curry, M.J.; Mott, F.; Kochuparambil, S.T.; McDonald, D.; Fidler, M.J.; Stenson, K.; Vasan, N.R.; Razaq, M.; et al. 2019 ASCO Annual Meeting I, Abstract 6014. Results of a phase 2a, multicenter, open-label, study of RM-1929 photoimmunotherapy (PIT) in patients with locoregional, recurrent head and neck squamous cell carcinoma (rHNSCC). J. Clin. Oncol. 2019, 37, 6014. [Google Scholar] [CrossRef]
- Cognetti, D.M.; Johnson, J.M.; Curry, M.J.; Kochuparambil, S.T.; McDonald, D.; Mott, F.; Fidler, M.J.; Stenson, K.; Vasan, N.R.; Razaq, M.A.; et al. Phase 1/2a, open-label, multicenter study of RM-1929 photoimmunotherapy in patients with locoregional, recurrent head and neck squamous cell carcinoma. Head Neck 2021, 43, 3875–3887. [Google Scholar] [CrossRef] [PubMed]
- A Phase 3, Randomized, Double-Arm, Open-Label, Controlled Trial of ASP-1929 Photoimmunotherapy Versus Physician’s Choice Standard of Care for the Treatment of Locoregional, Recurrent Head and Neck Squamous Cell Carcinoma in Patients Who Have Failed or Progressed On or After at Least Two Lines of Therapy, of Which at Least One Line Must Be Systemic Therapy. ClinicalTrials.gov ID: NCT03769506. Available online: https://clinicaltrials.gov/study/NCT03769506 (accessed on 14 February 2025).
- An Open-Label Study Using ASP-1929 Photoimmunotherapy in Combination with Anti-PD1 Therapy in EGFR Expressing Advanced Solid Tumors. ClinicalTrials.gov ID: NCT04305795. Available online: https://clinicaltrials.gov/study/NCT04305795?term=NCT04305795&rank=1 (accessed on 14 February 2025).
- Cognetti, D.M.; Curry, J.M.; Civantos, F.F.; Valentino, J.; Agbaje-Williams, M.; Danesi, H.; Dong, H.; Larracas, C.; Veresh, B.; Gillenwater, A.M.; et al. 2024 ASCO Annual Meeting I, Abstract 6083. Recent safety and efficacy findings from a phase 1b/2 open-label combination study of ASP-1929 photoimmunotherapy with anti-PD-1 therapy in EGFR-expressing advanced head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol. 2024, 42, 6083. [Google Scholar] [CrossRef]
- A Phase 1 First-in-Human, Drug-Dose Escalation Study of RM-1995 Photoimmunotherapy, as Monotherapy or Combined with Pembrolizumab, in Patients with Advanced Cutaneous Squamous Cell Carcinoma or with Head and Neck Squamous Cell Carcinoma. ClinicalTrials.gov ID: NCT05220748. Available online: https://clinicaltrials.gov/study/NCT05220748?term=NCT05220748&rank=1 (accessed on 14 February 2025).
- A Phase 2 Single-Arm Study of ASP-1929 Photoimmunotherapy Combined with Pembrolizumab in Patients with Locoregional Recurrent Squamous Cell Carcinoma of the Head and Neck, with or Without Metastases, Not Amenable to Curative Local Treatment. ClinicalTrials.gov ID: NCT05265013. Available online: https://clinicaltrials.gov/study/NCT05265013?term=NCT05265013&rank=1 (accessed on 14 February 2025).
- Phase 2, Open-Label, Single-Arm, Window of Opportunity Study of ASP-1929 Photoimmunotherapy with Fluorescence Imaging in Patients with Operable Primary or Recurrent Head and Neck or Cutaneous Squamous Cell Carcinoma. ClinicalTrials.gov ID: NCT05182866. Available online: https://clinicaltrials.gov/study/NCT05182866?term=NCT05182866&rank=1 (accessed on 14 February 2025).
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Y.; Fan, R.; Gao, K.; Xie, S.; Wang, F.; Zhang, J.; Zhang, H.; He, Y.; Xie, Z.; et al. Treatment of Recurrent Nasopharyngeal Carcinoma: A Sequential Challenge. Cancers 2022, 14, 4111. [Google Scholar] [CrossRef]
- Tahara, M.; Okano, S.; Enokida, T.; Ueda, Y.; Fujisawa, T.; Shinozaki, T.; Tomioka, T.; Okano, W.; Biel, M.A.; Ishida, K.; et al. A phase I, single-center, open-label study of RM-1929 photoimmunotherapy in Japanese patients with recurrent head and neck squamous cell carcinoma. Int. J. Clin. Oncol. 2021, 26, 1812–1821. [Google Scholar] [CrossRef]
- Kushihashi, Y.; Masubuchi, T.; Okamoto, I.; Fushimi, C.; Hanyu, K.; Yamauchi, M.; Tada, Y.; Miura, K. Photoimmunotherapy for Local Recurrence of Nasopharyngeal Carcinoma: A Case Report. Int. J. Otorhinolaryngol. Head Neck Surg. 2022, 11, 258–265. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef]
- Dudek, A.M.; Garg, A.D.; Krysko, D.V.; De Ruysscher, D.; Agostinis, P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor. Rev. 2013, 24, 319–333. [Google Scholar] [CrossRef]
- Ogawa, M.; Tomita, Y.; Nakamura, Y.; Lee, M.J.; Lee, S.; Tomita, S.; Nagaya, T.; Sato, K.; Yamauchi, T.; Iwai, H.; et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 2017, 8, 10425–10436. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, D.; Suzuki, H.; Beppu, S.; Terada, H.; Sawabe, M.; Hanai, N. Near-Infrared Photoimmunotherapy for Oropharyngeal Cancer. Cancers 2022, 14, 5662. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ando, K.; Okuyama, S.; Moriguchi, S.; Ogura, T.; Totoki, S.; Hanaoka, H.; Nagaya, T.; Kokawa, R.; Takakura, H.; et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018, 4, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, I.; Okada, T.; Tokashiki, K.; Tsukahara, K. Photoimmunotherapy for Managing Recurrent Laryngeal Cancer Cervical Lesions: A Case Report. Case Rep. Oncol. 2022, 15, 34–39. [Google Scholar] [CrossRef]
- Okamoto, I.; Okada, T.; Tokashiki, K.; Tsukahara, K. A Case Treated with Photoimmunotherapy Under a Navigation System for Recurrent Lesions of the Lateral Pterygoid Muscle. In Vivo 2022, 36, 1035–1040. [Google Scholar] [CrossRef]
- Okamoto, I.; Okada, T.; Tokashiki, K.; Tsukahara, K. Quality-of-Life Evaluation of Patients with Unresectable Locally Advanced or Locally Recurrent Head and Neck Carcinoma Treated with Head and Neck Photoimmunotherapy. Cancers 2022, 14, 4413. [Google Scholar] [CrossRef]
- Idogawa, H.; Shinozaki, T.; Okano, W.; Matsuura, K.; Hayashi, R. Nasopharyngeal Carcinoma Treated with Photoimmunotherapy. Cureus 2023, 15, e49315. [Google Scholar] [CrossRef]
- Beyer, W. Systems for light application and dosimetry in photodynamic therapy. J. Photochem. Photobiol. B 1996, 36, 153–156. [Google Scholar] [CrossRef]
- Vesselov, L.; Whittington, W.; Lilge, L. Design and performance of thin cylindrical diffusers created in Ge-doped multimode optical fibers. Appl. Opt. 2005, 44, 2754–2758. [Google Scholar] [CrossRef]
- Shafirstein, G.; Bellnier, D.; Oakley, E.; Hamilton, S.; Potasek, M.; Beeson, K.; Parilov, E. Interstitial Photodynamic Therapy—A Focused Review. Cancers 2017, 9, 12. [Google Scholar] [CrossRef]
- Stepp, H.; Sroka, R. Simple Characterization of Cylindrical Diffuser Fibers with a Fluorescent Layer. Lasers Surg. Med. 2024, 56, 597–605. [Google Scholar] [CrossRef]
- Ta, M.D.; Kim, Y.; Shin, H.; Truong, V.G.; Kang, H.W. Quantitative investigations on light emission profiles for interstitial laser treatment. Biomed. Opt. Express 2024, 15, 6877–6892. [Google Scholar] [CrossRef]
- Koyama, S.; Ehara, H.; Donishi, R.; Morisaki, T.; Ogura, T.; Taira, K.; Fukuhara, T.; Fujiwara, K. Photoimmunotherapy with surgical navigation and computed tomography guidance for recurrent maxillary sinus carcinoma. Auris Nasus Larynx 2023, 50, 646–651. [Google Scholar] [CrossRef]
- Omura, G.; Honma, Y.; Matsumoto, Y.; Shinozaki, T.; Itoyama, M.; Eguchi, K.; Sakai, T.; Yokoyama, K.; Watanabe, T.; Ohara, A.; et al. Transnasal photoimmunotherapy with cetuximab sarotalocan sodium: Outcomes on the local recurrence of nasopharyngeal squamous cell carcinoma. Auris Nasus Larynx 2023, 50, 641–645. [Google Scholar] [CrossRef]
- Shibutani, Y.; Sato, H.; Suzuki, S.; Shinozaki, T.; Kamata, H.; Sugisaki, K.; Kawanobe, A.; Uozumi, S.; Kawasaki, T.; Hayashi, R. A Case Series on Pain Accompanying Photoimmunotherapy for Head and Neck Cancer. Healthcare 2023, 11, 924. [Google Scholar] [CrossRef]
- Shinozaki, T.; Matsuura, K.; Okano, W.; Tomioka, T.; Nishiya, Y.; Machida, M.; Hayashi, R. Eligibility for Photoimmunotherapy in Patients with Unresectable Advanced or Recurrent Head and Neck Cancer and Changes before and after Systemic Therapy. Cancers 2023, 15, 3795. [Google Scholar] [CrossRef] [PubMed]
- Moriya, T.; Hashimoto, M.; Matsushita, H.; Masuyama, S.; Yoshida, R.; Okada, R.; Furusawa, A.; Fujimura, D.; Wakiyama, H.; Kato, T.; et al. Near-infrared photoimmunotherapy induced tumor cell death enhances tumor dendritic cell migration. Cancer Immunol. Immunother. 2022, 71, 3099–3106. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Nishikawa, D.; Muraoka, D.; Masago, K.; Beppu, S.; Terada, H.; Matsushita, H.; Hanai, N. Changes in serum DAMPs and cytokines/chemokines during near-infrared photoimmunotherapy for patients with head and neck cancer. Cancer Med. 2024, 13, e6863. [Google Scholar] [CrossRef]
- Hanyu, K.; Okamoto, I.; Tokashiki, K.; Tsukahara, K. A Case of Successful Treatment with an Immune Checkpoint Inhibitor after Head and Neck Photoimmunotherapy. Case Rep. Oncol. 2024, 17, 169–174. [Google Scholar] [CrossRef]
- Hirakawa, H.; Ikegami, T.; Kinjyo, H.; Hayashi, Y.; Agena, S.; Higa, T.; Kondo, S.; Toyama, M.; Maeda, H.; Suzuki, M. Feasibility of Near-infrared Photoimmunotherapy Combined with Immune Checkpoint Inhibitor Therapy in Unresectable Head and Neck Cancer. Anticancer. Res. 2024, 44, 3907–3912. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.J.; Burtness, B.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A., Jr.; Brana, I.; Basté, N.; Neupane, P.; et al. Pembrolizumab with or without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J. Clin. Oncol. 2023, 41, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Oridate, N.; Takahashi, S.; Tanaka, K.; Shimizu, Y.; Fujimoto, Y.; Matsumoto, K.; Yokota, T.; Yamazaki, T.; Takahashi, M.; Ueda, T.; et al. First-line pembrolizumab with or without chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma: 5-year follow-up of the Japanese population of KEYNOTE-048. Int. J. Clin. Oncol. 2024, 29, 1825–1839. [Google Scholar] [CrossRef]
- Kobayashi, H.; Furusawa, A.; Rosenberg, A.; Choyke, P.L. Near-infrared photoimmunotherapy of cancer: A new approach that kills cancer cells and enhances anti-cancer host immunity. Int. Immunol. 2021, 33, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.A.; Okamura, S.M.; De Magalhaes Filho, C.D.; Bergeron, D.M.; Rodriguez, A.; West, M.; Yadav, D.; Heim, R.; Fong, J.J.; Garcia-Guzman, M. Cancer-targeted photoimmunotherapy induces anti-tumor immunity and can be augmented by anti-PD-1 therapy for durable anticancer responses in an immunologically active murine tumor model. Cancer Immunol. Immunother. 2023, 72, 151–168. [Google Scholar] [CrossRef]
- Koyama, S.; Ehara, H.; Donishi, R.; Taira, K.; Fukuhara, T.; Fujiwara, K. Therapeutic Host Anticancer Immune Response through Photoimmunotherapy for Head and Neck Cancer May Overcome Resistance to Immune Checkpoint Inhibitors. Case Rep. Oncol. 2024, 17, 913–920. [Google Scholar] [CrossRef]
- Okamoto, I.; Okada, T.; Tokashiki, K.; Tsukahara, K. Two Cases of Emergency Tracheostomy After Head and Neck Photoimmunotherapy. Cancer Diagn. Progn. 2024, 4, 85–90. [Google Scholar] [CrossRef]
- Kásler, M.; Fodor, J.; Oberna, F.; Major, T.; Polgár, C.; Takácsi-Nagy, Z. Salvage surgery for locoregional failure after definitive radiotherapy for base of tongue cancer. In Vivo 2008, 22, 803–806. [Google Scholar]
- Akyildiz, A.; Guven, D.C.; Koksal, B.; Karaoglan, B.B.; Kivrak, D.; Ismayilov, R.; Aslan, F.; Sutcuoglu, O.; Yazici, O.; Kadioglu, A.; et al. Real-world evaluation of nivolumab in patients with non-nasopharyngeal recurrent or metastatic head and neck cancer: A retrospective multi-center study by the Turkish Oncology Group (TOG). Eur. Arch. Otorhinolaryngol. 2024, 281, 4991–4999. [Google Scholar] [CrossRef]
- Tamagawa, S.; Okuda, K.; Nishikawa, D.; Kono, M.; Hotomi, M. Near Infrared Photoimmunotherapy for Locoregionally Recurrent Oropharyngeal Squamous Cell Carcinoma at Tongue Base After Chemoradiotherapy: A Case Report and Literature Review. Cureus 2024, 16, e74742. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Lu, H.; Wang, H.; Gu, Y.; Li, H.; Sun, X.; Yu, H.; Wang, D. Clinical Outcomes of Salvage Endoscopic Nasopharyngectomy for Patients with Advanced Recurrent Nasopharyngeal Carcinoma. Front. Oncol. 2021, 11, 716729. [Google Scholar] [CrossRef]
- Lam, W.K.J.; Chan, J.Y.K. Recent advances in the management of nasopharyngeal carcinoma. F1000Research 2018, 7, 1829. [Google Scholar] [CrossRef]
- Ma, H.; Fang, J.; Zhong, Q.; Hou, L.; Feng, L.; He, S.; Wang, R.; Yang, Y. Reconstruction of nasopharyngeal defect with submental flap during surgery for nasopharyngeal malignant tumors. Front. Surg. 2022, 9, 985752. [Google Scholar] [CrossRef] [PubMed]
- Kushihashi, Y.; Masubuchi, T.; Okamoto, I.; Fushimi, C.; Yamazaki, M.; Asano, H.; Aoki, R.; Fujii, S.; Asako, Y.; Tada, Y. A Case of Photoimmunotherapy for Nasopharyngeal Carcinoma Requiring Emergency Tracheostomy. Case Rep. Oncol. 2024, 17, 471–476. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Blocki, A.; Franke, R.P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y. HMGB1 in inflammation and cancer. J. Hematol. Oncol. 2020, 13, 116. [Google Scholar] [CrossRef]
- Teixeira, G.; Faria, R. Inflammatory Mediators Leading to Edema Formation through Plasma Membrane Receptors. In Infections and Sepsis Development; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Caudell, T.P.; Mizell, D.M. Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, Kauai, HI, USA, 7–10 January 1992; pp. 659–669. [Google Scholar] [CrossRef]
- Lee, K. Augmented Reality in Education and Training. TechTrends 2012, 56, 13–21. [Google Scholar] [CrossRef]
- Thomas, D.J. Augmented reality in surgery: The Computer-Aided Medicine revolution. Int. J. Surg. 2016, 36, 25. [Google Scholar] [CrossRef]
- History Of Virtual Reality. Available online: https://www.vrs.org.uk/virtual-reality/history.html (accessed on 17 March 2025).
- Thomas Caudell. Coined the Term “Augmented Reality” at Boeing in 1990. Available online: https://www.awexr.com/hall-of-fame/20-thomas-caudell (accessed on 17 March 2025).
- History of Augmented Reality: The Timeline. GlobalData Thematic Research. Available online: https://www.verdict.co.uk/augmented-reality-timeline/?cf-view (accessed on 17 March 2025).
- Augmented Reality. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Augmented_reality (accessed on 17 March 2025).
- Okada, R.; Ito, T.; Kawabe, H.; Tsutsumi, T.; Asakage, T. Mixed reality-supported near-infrared photoimmunotherapy for oropharyngeal cancer: A case report. Ann. Med. Surg. 2024, 86, 5551–5556. [Google Scholar] [CrossRef]
- Okamoto, I. Photoimmunotherapy for head and neck cancer: A systematic review. Auris Nasus Larynx 2025, 52, 186–194. [Google Scholar] [CrossRef]
- Walkty, A.; Embil, J. Lemierre’s Syndrome. N. Engl. J. Med. 2019, 380, e16. [Google Scholar] [CrossRef]
- Le, C.; Gennaro, D.; Marshall, D.; Alaev, O.; Bryan, A.; Gelfman, A.; Wang, Z. Lemierre’s syndrome: One rare disease-Two case studies. J. Clin. Pharm. Ther. 2019, 44, 122–124. [Google Scholar] [CrossRef] [PubMed]
- García Romero, J.M.; Jaime Vargas, F.P.; Bravo Quiroz, J.G.; Pérez Mondragón, D.; Hernández Guillen, P. Lemierre’s Syndrome: A Case Report of Thrombophlebitis of the Internal Jugular Vein Induced by Laryngeal Cancer. Cureus 2024, 16, e65060. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.W.; Anjum, F.; Bentley, T.P. Lemierre Syndrome. [Updated 2023 Jul 31]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499846/ (accessed on 21 April 2025).
- Nishimura, M.; Okamoto, I.; Ito, T.; Tokashiki, K.; Tsukahara, K. Lemierre’s Syndrome after Head and Neck Photoimmunotherapy for Local Recurrence of Nasopharyngeal Carcinoma. Case Rep. Oncol. 2024, 17, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.; Nordmann-Kleiner, M.; Hoffmann, T.K.; Greve, J. Thrombosis of the internal jugular vein in the ENT-department–Prevalence, causes and therapy: A retrospective analysis. Auris Nasus Larynx 2019, 46, 624–629. [Google Scholar] [CrossRef]
- Pan, Y.; Shi, Z.; Ye, B.; Da, Q.; Wang, C.; Shen, Y.; Xiang, M. Surgical intervention of Lemierre’s syndrome: A case report and review of the literature. J. Med. Case Rep. 2024, 18, 265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Next-Generation Cancer Treatment: Photoimmunotherapy’s Promise for Unresectable Head and Neck Cancers. Pharmaceutics 2025, 17, 716. https://doi.org/10.3390/pharmaceutics17060716
Ailioaie LM, Ailioaie C, Litscher G. Next-Generation Cancer Treatment: Photoimmunotherapy’s Promise for Unresectable Head and Neck Cancers. Pharmaceutics. 2025; 17(6):716. https://doi.org/10.3390/pharmaceutics17060716
Chicago/Turabian StyleAilioaie, Laura Marinela, Constantin Ailioaie, and Gerhard Litscher. 2025. "Next-Generation Cancer Treatment: Photoimmunotherapy’s Promise for Unresectable Head and Neck Cancers" Pharmaceutics 17, no. 6: 716. https://doi.org/10.3390/pharmaceutics17060716
APA StyleAilioaie, L. M., Ailioaie, C., & Litscher, G. (2025). Next-Generation Cancer Treatment: Photoimmunotherapy’s Promise for Unresectable Head and Neck Cancers. Pharmaceutics, 17(6), 716. https://doi.org/10.3390/pharmaceutics17060716