Exploring the Analgesic Potential of L-Lysine: Molecular Mechanisms, Preclinical Evidence, and Implications for Pharmaceutical Pain Therapy
Abstract
:1. Introduction
Category | Acute Pain | Chronic Pain | References |
---|---|---|---|
Definition | A sudden, unpleasant sensory and emotional experience due to injury or surgery; short duration. | Persistent or recurrent pain lasting longer than 3–6 months, often without ongoing tissue damage. | [1,2] |
Duration | Short-term (days to weeks). | Long-term (months to years). | [3] |
Biological Function | Adaptive and protective; serves as a warning signal to prevent further harm. | Often maladaptive; becomes a pathological state with no protective benefit. | [3] |
Causes | Acute injury, surgery, burns, or acute inflammation. | Caused by chronic diseases (e.g., arthritis, neuropathy) or sometimes idiopathic (unknown cause). | [4] |
Emotional Components | Usually mild, linked to transient anxiety. | Prominent; includes depression, chronic anxiety, and psychological suffering. | [5] |
Response to Treatment | Generally responsive to conventional pharmacologic treatments like analgesics and NSAIDs. | Often limited responses; requires multidisciplinary approaches (medical, psychological, physical). | [4,5] |
Impact on Quality of Life | Minimal and temporary disruption in daily functioning. | A major impact on the physical, emotional, and social aspects of life. | [5] |
Functional Consequences | Rarely causes long-term disability; usually resolves with healing. | Leads to ongoing functional limitations and disability (e.g., mobility, work, social activity). | [6] |
The Current Pain Management Strategies
2. A Basic Overview of Lysine
Physiological Roles and Lysine Deficiency
3. Lysine and Its Implications for Pain
3.1. The Mechanisms of Action of Lysine in Pain Control
3.2. The Inhibition of NMDA Receptors
3.3. Modulation of Serotonin and Dopamine Levels
Factor | Role in Pain Modulation | References |
---|---|---|
Serotonin | ↓ levels linked to increased pain sensitivity, migraines, and reduced top-down inhibition | [42] |
Dopamine | Activates pain-inhibitory descending pathways | [43] |
Lysine | Enhances serotonin and dopamine production; reduces pain perception | [48] |
The Gut–Brain Axis | Lysine released post-meal enhances serotonin synthesis in the brain | [45] |
Amino Acids (Tryptophan/Tyrosine) | Influence neurotransmitter balance, with implications for mood and pain control | [44] |
Placebo and Opioid System | Pain relief via endogenous opioids, linked with top-down emotional and cognitive factors | [47] |
4. Clinical Studies on Lysine for Pain Management
4.1. Animal Studies
4.2. Human Clinical Trials
5. L-Lysine: Pharmacological Profile and Clinical Applications in Pain Management
6. Potential Side Effects and Safety Considerations with Lysine
Category | Findings and Considerations | Reference |
---|---|---|
Common Adverse Effects | Mild gastrointestinal disturbances (e.g., diarrhea) have been reported at high oral doses. | [16] |
Average Daily Intake (Europe) | Average intake in Europe: 2.6 g/day (women), 2.9 g/day (men); significantly below the RDI (8.4–10.4 g/day). | [72] |
Recommended Daily Intake (RDI) | Oral intake of 8.4 and 10.4 g/day is considered safe in healthy individuals. | [16] |
Clinical Use | Up to 6 g/day orally is well tolerated in schizophrenic patients without adverse interactions with antipsychotic drugs. | [62] |
Contraindicated | Caution is advised for individuals with mental health conditions; children with PKU have shown tolerance to lysine. | [71] |
Pharmaceutical Interventions | Lysine may enhance pain control when combined with COX inhibitors and may reduce the reliance on NSAIDs. | [71] |
7. Future Directions in the Research on Lysine for Pain Management
Emerging Trends and Technologies
8. Conclusions and Implications for Clinical Practice
Author Contributions
Funding
Conflicts of Interest
References
- Bannister, K.; Dickenson, A.H. Central Nervous System Targets: Supraspinal Mechanisms of Analgesia. Neurotherapeutics 2020, 17, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Tully, J.; Jung, J.W.; Patel, A.; Tukan, A.; Kandula, S.; Doan, A.; Imani, F.; Varrassi, G.; Cornett, E.M.; Kaye, A.D. Utilization of Intravenous Lidocaine Infusion for the Treatment of Refractory Chronic Pain. Anesthesiol. Pain Med. 2021, 10, e112290. [Google Scholar] [CrossRef] [PubMed]
- Isagulyan, E.D.; Makashova, E.S.; Lyubov’K, M.; Sergeenko, E.V.; Aslakhanova, K.S.; Tomskiy, A.A.; Voloshin, A.G.; Kashcheev, A.A. Psychogenic (Nociplastic) Pain: Current State of Diagnosis, Treatment Options, and Potentials of Neurosurgical Management. Prog. Brain Res. 2022, 272, 105–123. [Google Scholar]
- Kataria, S.; Patel, U.; Yabut, K.; Patel, J.; Patel, R.; Patel, S.; Wijaya, J.H.; Maniyar, P.; Karki, Y.; Makrani, M.P.; et al. Recent Advances in Management of Neuropathic, Nociceptive, and Chronic Pain: A Narrative Review with Focus on Nanomedicine, Gene Therapy, Stem Cell Therapy, and Newer Therapeutic Options. Curr. Pain Headache Rep. 2024, 28, 321–333. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Torres-Cueco, R.; Nohales-Alfonso, F. Vulvodynia—It Is Time to Accept a New Understanding from a Neurobiological Perspective. Int. J. Environ. Res. Public Health 2021, 18, 6639. [Google Scholar] [CrossRef]
- Alorfi, N.M. Pharmacological Methods of Pain Management: Narrative Review of Medication Used. Int. J. Gen. Med. 2023, 16, 3247–3256. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Liu, S.; Zheng, H.; Ji, L.; Yi, N.; Zhu, X.; Sun, W.; Liu, X.; Zhang, S. Decreased Amino Acids in the Brain Might Contribute to the Progression of Diabetic Neuropathic Pain. Diabetes Res. Clin. Pract. 2021, 176, 108790. [Google Scholar] [CrossRef]
- Aggarwal, R.; Bains, K. Protein, Lysine and Vitamin D: Critical Role in Muscle and Bone Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 2548–2559. [Google Scholar] [CrossRef]
- Huang, D.; Liang, H.; Ren, M.; Ge, X.; Ji, K.; Yu, H.; Maulu, S. Effects of Dietary Lysine Levels on Growth Performance, Whole Body Composition and Gene Expression Related to Glycometabolism and Lipid Metabolism in Grass Carp, Ctenopharyngodon Idellus Fry. Aquaculture 2021, 530, 735806. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Zhang, C.; Sreenivasulu, N.; Sun, S.S.-M.; Liu, Q. Lysine Biofortification of Crops to Promote Sustained Human Health in the 21st Century. J. Exp. Bot. 2022, 73, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Soglia, F.; Zampiga, M.; Baldi, G.; Malila, Y.; Thanatsang, K.V.; Srimarut, Y.; Tatiyaborworntham, N.; Unger, O.; Klamchuen, A.; Laghi, L. Lysine Depletion during Different Feeding Phases: Effects on Growth Performances and Meat Quality of Broiler Chickens. Animals 2021, 11, 1499. [Google Scholar] [CrossRef]
- Tantawi, A.M.E. Decreasing in Lysine Reflect Lysosomal Dysfunction and Accumulated Phenylalanine Which Connected to WMH and CVD and Both of Phenylke-Tonuria and Calcifications Where N-Acetylcysteine Prevent Organs Failure. Clin. Onco 2024, 7, 1–28. [Google Scholar]
- Lian, W.-S.; Wu, R.-W.; Ko, J.-Y.; Chen, Y.-S.; Wang, S.-Y.; Jahr, H.; Wang, F.-S. Inhibition of Histone Lysine Demethylase 6A Promotes Chondrocytic Activity and Attenuates Osteoarthritis Development through Repressing H3K27me3 Enhancement of Wnt10a. Int. J. Biochem. Cell Biol. 2023, 158, 106394. [Google Scholar] [CrossRef]
- Wass, C.; Klamer, D.; Katsarogiannis, E.; Pålsson, E.; Svensson, L.; Fejgin, K.; Bogren, I.-B.; Engel, J.A.; Rembeck, B. L-Lysine as Adjunctive Treatment in Patients with Schizophrenia: A Single-Blinded, Randomized, Cross-over Pilot Study. BMC Med. 2011, 9, 40. [Google Scholar] [CrossRef]
- Gunarathne, R.; Guan, X.; Feng, T.; Zhao, Y.; Lu, J. L-Lysine Dietary Supplementation for Childhood and Adolescent Growth: Promises and Precautions. J. Adv. Res. 2024, 70, 571–586. [Google Scholar] [CrossRef]
- Montout, L.; Poullet, N.; Bambou, J.-C. Systematic Review of the Interaction between Nutrition and Immunity in Livestock: Effect of Dietary Supplementation with Synthetic Amino Acids. Animals 2021, 11, 2813. [Google Scholar] [CrossRef]
- Cioffi, C.L. Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021, 11, 864. [Google Scholar] [CrossRef]
- Guerrero-Toro, C.; Koroleva, K.; Ermakova, E.; Gafurov, O.; Abushik, P.; Tavi, P.; Sitdikova, G.; Giniatullin, R. Testing the Role of Glutamate NMDA Receptors in Peripheral Trigeminal Nociception Implicated in Migraine Pain. Int. J. Mol. Sci. 2022, 23, 1529. [Google Scholar] [CrossRef]
- Baby, S.; Shinde, S.D.; Kulkarni, N.; Sahu, B. Lysine-Specific Demethylase 1 (LSD1) Inhibitors: Peptides as an Emerging Class of Therapeutics. ACS Chem. Biol. 2023, 18, 2144–2155. [Google Scholar] [CrossRef]
- Sharma, G.; Akhtar, J.; Khan, M.I.; Ahmad, M.; Neopane, D. Target Receptors in Diabetic Neuropathy: Key Insights & Implications. Biomed. Res. Ther. 2024, 11, 6698–6719. [Google Scholar]
- Manengu, C.; Zhu, C.-H.; Zhang, G.-D.; Tian, M.-M.; Lan, X.-B.; Tao, L.-J.; Ma, L.; Liu, Y.; Yu, J.-Q.; Liu, N. HDAC Inhibitors as a Potential Therapy for Chemotherapy-Induced Neuropathic Pain. Inflammopharmacology 2024, 32, 2153–2175. [Google Scholar] [CrossRef]
- Calderon-Rivera, A.; Gomez, K.; Loya-López, S.; Wijeratne, E.K.; Stratton, H.; Tang, C.; Duran, P.; Masterson, K.; Alsbiei, O.; Gunatilaka, A.L. Betulinic Acid Analogs Inhibit N-and T-Type Voltage-Gated Calcium Channels to Attenuate Nerve-Injury Associated Neuropathic and Formalin Models of Pain. Neurobiol. Pain 2023, 13, 100116. [Google Scholar] [CrossRef]
- Petrikonis, K.; Bernatoniene, J.; Kopustinskiene, D.M.; Casale, R.; Davinelli, S.; Saso, L. The Antinociceptive Role of Nrf2 in Neuropathic Pain: From Mechanisms to Clinical Perspectives. Pharmaceutics 2024, 16, 1068. [Google Scholar] [CrossRef]
- Islas, Á.A.; Scior, T.; Torres-Ramirez, O.; Salinas-Stefanon, E.M.; Lopez-Lopez, G.; Flores-Hernandez, J. Computational Molecular Characterization of the Interaction of Acetylcholine and the NMDA Receptor to Explain the Direct Glycine-Competitive Potentiation of NMDA-Mediated Neuronal Currents. ACS Chem. Neurosci. 2022, 13, 229–244. [Google Scholar] [CrossRef]
- Wilcox, M.R.; Nigam, A.; Glasgow, N.G.; Narangoda, C.; Phillips, M.B.; Patel, D.S.; Mesbahi-Vasey, S.; Turcu, A.L.; Vázquez, S.; Kurnikova, M.G. Inhibition of NMDA Receptors through a Membrane-to-Channel Path. Nat. Commun. 2022, 13, 4114. [Google Scholar] [CrossRef]
- Peterson, C.D.; Kitto, K.F.; Verma, H.; Pflepsen, K.; Delpire, E.; Wilcox, G.L.; Fairbanks, C.A. Agmatine Requires GluN2B-Containing NMDA Receptors to Inhibit the Development of Neuropathic Pain. Mol. Pain. 2021, 17, 17448069211029171. [Google Scholar] [CrossRef]
- Weng, H.-R.; Taing, K.; Chen, L.; Penney, A. EZH2 Methyltransferase Regulates Neuroinflammation and Neuropathic Pain. Cells 2023, 12, 1058. [Google Scholar] [CrossRef]
- Vashisth, M.K.; Hu, J.; Liu, M.; Basha, S.H.; Yu, C.; Huang, W. In-Silico Discovery of 17alpha-Hydroxywithanolide-D as Potential Neuroprotective Allosteric Modulator of NMDA Receptor Targeting Alzheimer’s Disease. Sci. Rep. 2024, 14, 27908. [Google Scholar] [CrossRef]
- Pérez-Sisqués, L.; Bhatt, S.U.; Caruso, A.; Ahmed, M.U.; Gileadi, T.E.; Spring, S.; Hendy, E.; Taylor-Papadimitriou, J.; Cash, D.; Clifton, N. Deficiency of the Histone Lysine Demethylase KDM5B Causes Autism-like Phenotypes via Increased NMDAR Signalling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Casby, J.; Gansemer, B.M.; Thayer, S.A. NMDA Receptor–Mediated Ca2+ Flux Attenuated by the NMDA Receptor/ TRPM4 Interface Inhibitor Brophenexin. Pharmacol. Res. Perspect. 2024, 12, e70038. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Shen, R.; Xie, B.; Jiang, Y.; Geng, X.; Dong, W. AMPA Receptors in Alzheimer Disease: Pathological Changes and Potential Therapeutic Targets. J. Neuropathol. Exp. Neurol. 2024, 83, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Ramos De Dios, S.M.; Hass, J.L.; Graham, D.L.; Kumar, N.; Antony, A.E.; Morton, M.D.; Berkowitz, D.B. Information-Rich, Dual-Function13 C/2 H-Isotopic Crosstalk NMR Assay for Human Serine Racemase (hSR) Provides a PLP-Enzyme “Partitioning Fingerprint” and Reveals Disparate Chemotypes for hSR Inhibition. J. Am. Chem. Soc. 2023, 145, 3158–3174. [Google Scholar] [CrossRef]
- Wilson, B.S.; Peiser-Oliver, J.; Gillis, A.; Evans, S.; Alamein, C.; Mostyn, S.N.; Shimmon, S.; Rawling, T.; Christie, M.J.; Vandenberg, R.J. Peripheral Administration of Selective Glycine Transporter-2 Inhibitor, Oleoyl-d-Lysine, Reverses Chronic Neuropathic Pain but Not Acute or Inflammatory Pain in Male Mice. J. Pharmacol. Exp. Ther. 2022, 382, 246–255. [Google Scholar] [CrossRef]
- Zou, Y.; Bai, X.-H.; Kong, L.-C.; Xu, F.-F.; Ding, T.-Y.; Zhang, P.-F.; Dong, F.-L.; Ling, Y.-J.; Jiang, B.-C. Involvement of Histone Lysine Crotonylation in the Regulation of Nerve-Injury-Induced Neuropathic Pain. Front. Immunol. 2022, 13, 885685. [Google Scholar] [CrossRef]
- Borgonetti, V.; Mugnaini, C.; Corelli, F.; Galeotti, N. The Selective CB2 Agonist COR167 Reduced Symptoms in a Mice Model of Trauma-Induced Peripheral Neuropathy through HDAC-1 Inhibition. Biomedicines 2023, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.; Osborn, M.; Tsantoulas, C.; David-Pereira, A.; Cohn, D.; Duffy, P.; Ruston, L.; Johnson, C.; Bradshaw, H.; Kaczocha, M. Discovery and Preclinical Evaluation of a Novel Inhibitor of FABP5, ART26. 12, Effective in Oxaliplatin-Induced Peripheral Neuropathy. J. Pain 2024, 25, 104470. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Liu, D.; Zhou, Y.; Mei, W. SIRT1: A Promising Therapeutic Target for Chronic Pain. CNS Neurosci. Ther. 2022, 28, 818–828. [Google Scholar] [CrossRef]
- Severyanova, L.A.; Lazarenko, V.A.; Plotnikov, D.V.; Dolgintsev, M.E.; Kriukov, A.A. L-Lysine as the Molecule Influencing Selective Brain Activity in Pain-Induced Behavior of Rats. Int. J. Mol. Sci. 2019, 20, 1899. [Google Scholar] [CrossRef]
- Tan-No, K.; Esashi, A.; Nakagawasai, O.; Niijima, F.; Sakurada, C.; Sakurada, T.; Bakalkin, G.; Terenius, L.; Tadano, T. Nociceptive Behavior Induced by Poly-l-Lysine and Other Basic Compounds Involves the Spinal NMDA Receptors. Brain Res. 2004, 1008, 49–53. [Google Scholar] [CrossRef]
- Li, M.; Yang, G. A Mesocortical Glutamatergic Pathway Modulates Neuropathic Pain Independent of Dopamine Co-Release. Nat. Commun. 2024, 15, 643. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Rodríguez, A.; Reyes-Long, S.; Roldan-Valadez, E.; González-Torres, M.; Bonilla-Jaime, H.; Bandala, C.; Avila-Luna, A.; Bueno-Nava, A.; Cabrera-Ruiz, E.; Sanchez-Aparicio, P.; et al. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals 2024, 17, 1205. [Google Scholar] [CrossRef]
- Grivet, Z.; Aby, F.; Verboven, A.; Bouali-Benazzouz, R.; Sueur, B.; Maingret, F.; Naudet, F.; Dhellemmes, T.; De Deurwaerdere, P.; Benazzouz, A.; et al. Brainstem Serotonin Amplifies Nociceptive Transmission in a Mouse Model of Parkinson’s Disease. npj Park. Dis. 2025, 11, 11. [Google Scholar] [CrossRef]
- Biomedical molecular, immunology and Cardiology studies. Toronto Canada and Cairo Egypt; El Tantawi, A.M. Potency of Lysine and Tryptophan Protect from Lysosomal Dysfunction and from Phenylketonuria, and Mitochondrial Disorder Mediated by Activating Lysosomes and OPA1. Int. J. Stem Cells Med. 2024, 3. [Google Scholar] [CrossRef]
- Omaliko, P.C.; Ferket, P.R.; Ogundare, T.E.; Apalowo, O.O.; Enenya, I.G.; Iwuozo, O.C.; Han, J.; Fasina, Y.O. Impact of Dietary Fat Types on Expression Levels of Dopamine and Serotonin Transporters in the Ileum of Broiler Chickens. Poult. Sci. 2024, 103, 104114. [Google Scholar] [CrossRef]
- Kirkland, S.W.; Visser, L.; Meyer, J.; Junqueira, D.R.; Campbell, S.; Villa-Roel, C.; Friedman, B.W.; Essel, N.O.; Rowe, B.H. The Effectiveness of Parenteral Agents for Pain Reduction in Patients with Migraine Presenting to Emergency Settings: A Systematic Review and Network Analysis. Headache 2024, 64, 424–447. [Google Scholar] [CrossRef]
- Pagnini, F.; Barbiani, D.; Grosso, F.; Cavalera, C.; Volpato, E.; Minazzi, G.A.; Poletti, V.; Riva, G.; Phillips, D. Enacting the Mind/Body Connection: The Role of Self-Induced Placebo Mechanisms. Humanit. Soc. Sci. Commun. 2024, 11, 977. [Google Scholar] [CrossRef]
- Pedrazini, M.C.; da Silva, M.H.; Odone, L.F.G.; Groppo, F.C. L-Lysine as a Possible Supplement for Treatment of Herpetic Epithelial Keratitis: A Case Report and Literature Review. J. Explor. Res. Pharmacol. 2024, 9, 127–134. [Google Scholar] [CrossRef]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef]
- Zeinoddini, A.; Ahadi, M.; Farokhnia, M.; Rezaei, F.; Tabrizi, M.; Akhondzadeh, S. L-Lysine as an Adjunct to Risperidone in Patients with Chronic Schizophrenia: A Double-Blind, Placebo-Controlled, Randomized Trial. J. Psychiatr. Res. 2014, 59, 125–131. [Google Scholar] [CrossRef]
- Chavda, V.P.; Gogoi, N.R.; Vaghela, D.A.; Balar, P.C.; Dawre, S.; Dave, D.J. Parenteral Microemulsions for Drug Delivery: Advances and Update. J. Drug Deliv. Sci. Technol. 2023, 89, 104991. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Houk, G.M.; Patil, S.; Bangalore Siddaiah, H.; Kaye, A.J.; Iyengar, P.S.; Cornett, E.M.; Imani, F.; Mahmoudi, K.; Kaye, A.M.; et al. Adjuvant Drugs for Peripheral Nerve Blocks: The Role of Alpha-2 Agonists, Dexamethasone, Midazolam, and Non-Steroidal Anti-Inflammatory Drugs. Anesthesiol. Pain Med. 2021, 11, e117197. [Google Scholar] [CrossRef]
- Barnish, M.; Sheikh, M.; Scholey, A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023, 15, 2154. [Google Scholar] [CrossRef]
- Pergolizzi, J.V.; Breve, F.; Magnusson, P.; LeQuang, J.K.; Varassi, G. Current and Emerging COX Inhibitors for Treating Postoperative Pain Following Oral Surgery. Expert Opin. Pharmacother. 2023, 24, 347–358. [Google Scholar] [CrossRef]
- Aramini, A.; Bianchini, G.; Lillini, S.; Tomassetti, M.; Pacchiarotti, N.; Canestrari, D.; Cocchiaro, P.; Novelli, R.; Dragani, M.C.; Palmerio, F. Ketoprofen, Lysine and Gabapentin Co-Crystal Magnifies Synergistic Efficacy and Tolerability of the Constituent Drugs: Pre-Clinical Evidences towards an Innovative Therapeutic Approach for Neuroinflammatory Pain. Biomed. Pharmacother. 2023, 163, 114845. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, Z.; Zhou, D.; Wang, R.; Verkhratsky, A.; Nie, H. Investigation of the Anti-Inflammatory, Anti-Pruritic, and Analgesic Effects of Sophocarpine Inhibiting TRP Channels in a Mouse Model of Inflammatory Itch and Pain. J. Ethnopharmacol. 2025, 337, 118882. [Google Scholar] [CrossRef]
- Kalinina, A.D.; Rogachevskii, I.V.; Samosvat, D.M.; Zegrya, G.G.; Butkevich, I.P.; Mikhailenko, V.A.; Plakhova, V.B.; Penniyaynen, V.A.; Podzorova, S.A.; Krylov, B.V. Analgesic Effect of the Lysine-Containing Short Peptide Is Due to Modulation of the NaV1. 8 Channel Activation Gating System. Life 2023, 13, 1800. [Google Scholar] [CrossRef]
- Martín-Escura, C.; Medina-Peris, A.; Spear, L.A.; de la Torre Martínez, R.; Olivos-Oré, L.A.; Barahona, M.V.; González-Rodríguez, S.; Fernández-Ballester, G.; Fernández-Carvajal, A.; Artalejo, A.R. β–Lactam TRPM8 Antagonist RGM8-51 Displays Antinociceptive Activity in Different Animal Models. Int. J. Mol. Sci. 2022, 23, 2692. [Google Scholar] [CrossRef]
- Horváth, Á.; Steib, A.; Nehr-Majoros, A.; Kántás, B.; Király, Á.; Racskó, M.; Tóth, B.I.; Szánti-Pintér, E.; Kudová, E.; Skoda-Földes, R. Anti-Nociceptive Effects of Sphingomyelinase and Methyl-Beta-Cyclodextrin in the Icilin-Induced Mouse Pain Model. Int. J. Mol. Sci. 2024, 25, 4637. [Google Scholar] [CrossRef]
- Pereira, R.C.M.; Medeiros, P.; Coimbra, N.C.; Machado, H.R.; de Freitas, R.L. Cortical Neurostimulation and N-Methyl-D-Aspartate Glutamatergic Receptor Activation in the Dysgranular Layer of the Posterior Insular Cortex Modulate Chronic Neuropathic Pain. Neuromodul. Technol. Neural Interface 2023, 26, 1622–1636. [Google Scholar] [CrossRef]
- Abbaszadeh, F.; Javadpour, P.; Mousavi Nasab, M.M.; Jorjani, M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. Oxidative Med. Cell. Longev. 2024, 2024, 4293391. [Google Scholar] [CrossRef] [PubMed]
- Firmanda, A.; Mahardika, M.; Fahma, F.; Amelia, D.; Pratama, A.W.; Amalia, N.; Syafri, E.; Achaby, M.E. Cellulose-enriched Ascorbic Acid for Wound Dressing Application: Future Medical Textile. J. Appl. Polym. Sci. 2024, 141, e56013. [Google Scholar] [CrossRef]
- Laky, B.; Huemer, D.; Eigenschink, M.; Sagl, B.; Thell, R.; Wagner, K.-H.; Anderl, W.; Heuberer, P.R. A Dietary Supplement in the Management of Patients with Lumbar Osteochondrosis: A Randomized, Double-Blinded, Placebo-Controlled Study. Nutrients 2024, 16, 2695. [Google Scholar] [CrossRef]
- Muratore, M.; Quarta, L.; Grimaldi, A.; Costanza, D.; Lanata, L.; Bagnasco, M.; Monguzzi, A.; Quarta, E. Efficacy of Ketoprofen Lysine Salt in Reducing Inflammation and Pain in Primary Osteoarthritis of the Hand: Preliminary Results of a Retrospective and Prospective Clinical Trial. Arthritis Rheumatol. 2014, 66, S974. [Google Scholar]
- Hayamizu, K.; Oshima, I.; Nakano, M. Comprehensive Safety Assessment of ʟ-Lysine Supplementation from Clinical Studies: A Systematic Review. J. Nutr. 2020, 150, 2561S–2569S. [Google Scholar] [CrossRef]
- Oros, M.; Oros Jar, M.; Grabar, V. Steroids and L-Lysine Aescinate for Acute Radiculopathy Due to a Herniated Lumbar Disk. Medicina 2019, 55, 736. [Google Scholar] [CrossRef]
- Pernia-Andrade, A.J.; Tortorici, V.; Vanegas, H. Induction of Opioid Tolerance by Lysine-Acetylsalicylate in Rats. Pain 2004, 111, 191–200. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Dong, X.; Wang, H.; Ding, L.; Wang, X. Design of a Novel Lysine Isopeptide 1018KI11 with Potent Antimicrobial Activity as a Safe and Stable Food Preservative Candidate. J. Agric. Food Chem. 2024, 72, 7894–7905. [Google Scholar] [CrossRef]
- Kedar, O.; Golberg, A.; Obolski, U.; Confino-Cohen, R. Allergic to Bureaucracy? Regulatory Allergenicity Assessments of Novel Food: Motivations, Challenges, Compromises, and Possibilities. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13300. [Google Scholar] [CrossRef]
- Naka, W.; Tsunemi, Y. Effects of Additional Oral Fosravuconazole L-Lysine Ethanolate Therapy Following Inadequate Response to Initial Treatment for Onychomycosis: A Multicenter, Randomized Controlled Trial. J. Dermatol. 2024, 51, 964–972. [Google Scholar] [CrossRef]
- Nieradko-Iwanicka, B.; Ruszel, K. Nutritional Status of Female Rats after Acute Intoxication with Ethyl Alcohol and Treatment with Ketoprofen Lysine Salt or Ketoprofen. Curr. Issues Pharm. Med. Sci. 2024, 37, 221–225. [Google Scholar] [CrossRef]
- Tong, T.Y.N.; Clarke, R.; Schmidt, J.A.; Huybrechts, I.; Noor, U.; Forouhi, N.G.; Imamura, F.; Travis, R.C.; Weiderpass, E.; Aleksandrova, K.; et al. Dietary Amino Acids and Risk of Stroke Subtypes: A Prospective Analysis of 356,000 Participants in Seven European Countries. Eur. J. Nutr. 2024, 63, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Paladini, A.; Gharibo, C.; Khalbous, S.; Salti, A.; Ergönenç, T.; Pasqualucci, A.; Varrassi, G. Looking Back, Moving Forward in Pain Medicine. Cureus 2023, 15, e44716. [Google Scholar] [CrossRef]
- Edwards, R.R.; Schreiber, K.L.; Dworkin, R.H.; Turk, D.C.; Baron, R.; Freeman, R.; Jensen, T.S.; Latremoliere, A.; Markman, J.D.; Rice, A.S. Optimizing and Accelerating the Development of Precision Pain Treatments for Chronic Pain: IMMPACT Review and Recommendations. J. Pain 2023, 24, 204–225. [Google Scholar] [CrossRef]
Model | Animal | Lysine Dose | Effect | Notes |
---|---|---|---|---|
Formalin Test | Rats | 0.5 or 2 g/kg (s.c.) | ↓ second-phase paw licking | Pain is reduced without affecting movement |
c-Fos Neuron Activity | Rats (spinal cord) | 0.5 or 2 g/kg (s.c.) | ↓ active pain neurons (c-Fos) | Indicates reduced pain signals in the spinal cord |
Acetic Acid Writhing | Mice | 1 g/kg (i.p.) (intraperitoneal) | Writhing is completely suppressed | Lysine blocked pain caused by acid injection |
Interaction with L-Arginine | Mice | L-Arginine 3 g/kg i.p. (intraperitoneal) | Blocked lysine’s effect | Suggests nitric oxide (NO) involvement |
ADMA Interaction (NO Inhibitor) | Rats | ADMA before lysine (i.v.) infusion | Reversed lysine’s effect | Further confirms that the NO pathway plays a role |
Multiple-Dose Testing | Rats | 0.1–5 g/kg (p.o.) (oral gavage) | 5 g/kg reduced writhing significantly | Especially after 24 h of acetic acid injection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibrahem, W.; Kharrat Helu, N.; Törős, G.; Oláh, C.; Prokisch, J. Exploring the Analgesic Potential of L-Lysine: Molecular Mechanisms, Preclinical Evidence, and Implications for Pharmaceutical Pain Therapy. Pharmaceutics 2025, 17, 666. https://doi.org/10.3390/pharmaceutics17050666
Alibrahem W, Kharrat Helu N, Törős G, Oláh C, Prokisch J. Exploring the Analgesic Potential of L-Lysine: Molecular Mechanisms, Preclinical Evidence, and Implications for Pharmaceutical Pain Therapy. Pharmaceutics. 2025; 17(5):666. https://doi.org/10.3390/pharmaceutics17050666
Chicago/Turabian StyleAlibrahem, Walaa, Nihad Kharrat Helu, Gréta Törős, Csaba Oláh, and József Prokisch. 2025. "Exploring the Analgesic Potential of L-Lysine: Molecular Mechanisms, Preclinical Evidence, and Implications for Pharmaceutical Pain Therapy" Pharmaceutics 17, no. 5: 666. https://doi.org/10.3390/pharmaceutics17050666
APA StyleAlibrahem, W., Kharrat Helu, N., Törős, G., Oláh, C., & Prokisch, J. (2025). Exploring the Analgesic Potential of L-Lysine: Molecular Mechanisms, Preclinical Evidence, and Implications for Pharmaceutical Pain Therapy. Pharmaceutics, 17(5), 666. https://doi.org/10.3390/pharmaceutics17050666