Kollicoat® Smartseal 100P for Developing Theophylline Pellets: Exploring Taste-Masking Potential for Pediatric Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hot-Melt Extrusion Processing
2.3. Thermogravimetric Analysis (TGA)
2.4. Drug Content
2.5. Differential Scanning Calorimetry (DSC)
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. In Vitro Drug Release in Simulated Salivary Fluid (SSF)
2.8. In Vitro Drug Release in 0.1 N HCl
2.9. Bitter Threshold Comparison Study
2.10. Stability Studies
- Rj = cumulative drug release of initial samples,
- Tj = cumulative release of the test sample at predetermined time points,
- n = number of time points.
2.11. Statistical Analysis
3. Results and Discussion
3.1. Hot Melt Extrusion Process and Parameters
3.2. TGA
3.3. Drug Content Analysis
3.4. DSC Analaysis
3.5. FTIR Analysis
3.6. Evaluation of Taste Making Effectiveness and Drug Release in SSF
3.7. In Vitro Drug Release in 0.1 N HCl
3.8. Bitter Threshold Comparison
3.9. Stability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hauber, B.; Hand, M.V.; Hancock, B.C.; Zarrella, J.; Harding, L.; Ogden-Barker, M.; Antipas, A.S.; Watt, S.J. Patient Acceptability and Preferences for Solid Oral Dosage Form Drug Product Attributes: A Scoping Review. Patient Prefer. Adherence 2024, 18, 1281–1297. [Google Scholar] [CrossRef]
- Steiner, D.; Meyer, A.; Immohr, L.I.; Pein-Hackelbusch, M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024, 16, 658. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, L.R.; Ashokbhai, M.K.; Ghatole, S.; Roy, S.; Kashinath, K.P.; Kaity, S. Strategies for Beating the Bitter Taste of pharmaceutical formulations towards better therapeutic outcomes. RSC Pharm. 2025, 2, 59–81. [Google Scholar] [CrossRef]
- Ahmed, K.K.; Kassab, H.J.; Al Ramahi, I.J.; Alwan, Z.S. Taste Masking of Steroids for Oral Formulations. Turk. J. Pharm. Sci. 2023, 20, 352–360. [Google Scholar] [CrossRef]
- Liu, T.; Wan, X.; Luo, Z.; Liu, C.; Quan, P.; Cun, D.; Fang, L. A Donepezil/Cyclodextrin Complexation Orodispersible Film: Effect of Cyclodextrin on Taste-Masking Based on Dynamic Process and in Vivo Drug Absorption. Asian J. Pharm. Sci. 2019, 14, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Al-kasmi, B.; Alsirawan, M.B.; Bashimam, M.; El-zein, H. Mechanical Microencapsulation: The Best Technique in Taste Masking for the Manufacturing Scale—Effect of Polymer Encapsulation on Drug Targeting. J. Control. Release 2017, 260, 134–141. [Google Scholar] [CrossRef]
- Chiarugi, I.; Biagi, D.; Nencioni, P.; Maestrelli, F.; Valleri, M.; Mura, P.A. Taste Masking of Dexketoprofen Trometamol Orally Disintegrating Granules by High-Shear Coating with Glyceryl Distearate. Pharmaceutics 2024, 16, 165. [Google Scholar] [CrossRef]
- Siddiqui, F.; Shoaib, M.H.; Ahmed, F.R.; Qazi, F.; Yousuf, R.I.; Usmani, M.T.; Saleem, M.T.; Ahmed, K. Formulation Development and Optimization of Taste-Masked Azithromycin Oral Suspension with Ion Exchange Resins: Bioanalytical Method Development and Validation, in Vivo Bioequivalence Study, and in-Silico PBPK Modeling for the Paediatric Population. J. Drug Deliv. Sci. Technol. 2023, 79, 104048. [Google Scholar] [CrossRef]
- Mishra, A.; Upadhyay, P.K.; Niranjan, A.K. Formulation and Optimization of Anti-Epileptic Drug Delivery System for Fast Dissolving Intraoral Drug. World J. Pharm. Res. 2022, 11, 1121–1140. [Google Scholar] [CrossRef]
- Krieser, K.; Emanuelli, J.; Daudt, R.M.; Bilatto, S.; Willig, J.B.; Guterres, S.S.; Pohlmann, A.R.; Buffon, A.; Correa, D.S.; Külkamp-Guerreiro, I.C. Taste-Masked Nanoparticles Containing Saquinavir for Pediatric Oral Administration. Mater. Sci. Eng. C 2020, 117, 111315. [Google Scholar] [CrossRef]
- Gryczke, A.; Schminke, S.; Maniruzzaman, M.; Beck, J.; Douroumis, D. Development and Evaluation of Orally Disintegrating Tablets (ODTs) Containing Ibuprofen Granules Prepared by Hot Melt Extrusion. Colloids Surf. B Biointerfaces 2011, 86, 275–284. [Google Scholar] [CrossRef]
- Patil, P.S.; Suryawanshi, S.J.; Patil, S.S.; Pawar, A.P. HME-Assisted Formulation of Taste-Masked Dispersible Tablets of Cefpodoxime Proxetil and Roxithromycin. J. Taibah Univ. Med. Sci. 2024, 19, 252–262. [Google Scholar] [CrossRef]
- Malaquias, L.F.B.; Sá-Barreto, L.C.L.; Freire, D.O.; Silva, I.C.R.; Karan, K.; Durig, T.; Lima, E.M.; Marreto, R.N.; Gelfuso, G.M.; Gratieri, T.; et al. Taste Masking and Rheology Improvement of Drug Complexed with Beta-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin by Hot-Melt Extrusion. Carbohydr. Polym. 2018, 185, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.C.T.; Ong, J.J.; Gokhale, R.; Heng, P.W.S. Hot Melt Extrusion of Ion-Exchange Resin for Taste Masking. Int. J. Pharm. 2018, 547, 385–394. [Google Scholar] [CrossRef]
- Wang, H.; Dumpa, N.; Bandari, S.; Durig, T.; Repka, M.A. Fabrication of Taste-Masked Donut-Shaped Tablets Via Fused Filament Fabrication 3D Printing Paired with Hot-Melt Extrusion Techniques. AAPS PharmSciTech 2020, 21, 243. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Boateng, J.S.; Chowdhry, B.Z.; Snowden, M.J.; Douroumis, D. A Review on the Taste Masking of Bitter APIs: Hot-Melt Extrusion (HME) Evaluation. Drug Dev. Ind. Pharm. 2014, 40, 145–156. [Google Scholar] [CrossRef]
- Sawant, K.; Elkanayati, R.M.; Almotairy, A.; Repka, M.A.; Almutairi, M. Clotrimazole Mucoadhesive Films with Extended-Release Properties for Vaginal Candidiasis—A Hot-Melt Extrusion Application. J. Pharm. Sci. 2025, 114, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Elkanayati, R.M.; Omari, S.; Youssef, A.A.A.; Almutairi, M.; Almotairy, A.; Repka, M.; Ashour, E.A. Multilevel Categoric Factorial Design for Optimization of Raloxifene Hydrochloride Solid Dispersion in PVP K30 by Hot-Melt Extrusion Technology. J. Drug Deliv. Sci. Technol. 2024, 92, 105362. [Google Scholar] [CrossRef]
- Elkanayati, R.M.; Karnik, I.; Uttreja, P.; Narala, N.; Vemula, S.K.; Karry, K.; Repka, M.A. Twin Screw Melt Granulation of Simvastatin: Drug Solubility and Dissolution Rate Enhancement Using Polymer Blends. Pharmaceutics 2024, 16, 1630. [Google Scholar] [CrossRef]
- Palekar, S.; Nukala, P.K.; Patel, K. Aversion Liquid-Filled Drug Releasing Capsule (3D-RECAL): A Novel Technology for the Development of Immediate Release Abuse Deterrent Formulations Using a Fused Deposition Modelling (FDM) 3D Printer. Int. J. Pharm. 2022, 621, 121804. [Google Scholar] [CrossRef]
- Alshammari, N.D.; Almotairy, A.; Almutairi, M.; Zhang, P.; Al Shawakri, E.; Vemula, S.K.; Repka, M.A. Colon-Targeted 3D-Printed Mesalamine Tablets: Core-Shell Design and in Vitro/Ex-Vivo Evaluation. J. Drug Deliv. Sci. Technol. 2024, 95, 105580. [Google Scholar] [CrossRef]
- Elkanayati, R.M.; Chambliss, W.G.; Omari, S.; Almutairi, M.; Repka, M.A.; Ashour, E.A. Mucoadhesive Buccal Films for Treatment of Xerostomia Prepared by Coupling HME and 3D Printing Technologies. J. Drug Deliv. Sci. Technol. 2022, 75, 103660. [Google Scholar] [CrossRef]
- Vemula, S.K.; Narala, S.; Uttreja, P.; Narala, N.; Daravath, B.; Kalla, C.S.A.; Baisa, S.; Munnangi, S.R.; Chella, N.; Repka, M.A. Quality by Design (QbD) Approach to Develop Colon-Specific Ketoprofen Hot-Melt Extruded Pellets: Impact of Eudragit® S 100 Coating on the In Vitro Drug Release. Pharmaceutics 2024, 16, 1265. [Google Scholar] [CrossRef] [PubMed]
- Omari, S.; Ashour, E.A.; Elkanayati, R.; Alyahya, M.; Almutairi, M.; Repka, M.A. Formulation Development of Loratadine Immediate-Release Tablets Using Hot-Melt Extrusion and 3D Printing Technology. J. Drug Deliv. Sci. Technol. 2022, 74, 103505. [Google Scholar] [CrossRef]
- Elkanayati, R.M.; Darwesh, A.Y.; Taha, I.; Wang, H.; Uttreja, P.; Vemula, S.K.; Chambliss, W.G.; Repka, M.A. Quality by Design Approach for Fabrication of Extended-Release Buccal Films for Xerostomia Employing Hot-Melt Extrusion Technology. Eur. J. Pharm. Biopharm. 2024, 200, 114335. [Google Scholar] [CrossRef]
- Almutairi, M.; Hefnawy, A.; Almotairy, A.; Alobaida, A.; Alyahya, M.; Althobaiti, A.; Adel Ali Youssef, A.; Elkanayati, R.M.; Ashour, E.A.; Smyth, H.D.C.; et al. Formulation and Evaluation of Inhaled Sildenafil-Loaded PLGA Microparticles for Treatment of Pulmonary Arterial Hypertension (PAH): A Novel High Drug Loaded Formulation and Scalable Process via Hot Melt Extrusion Technology (Part I). Int. J. Pharm. 2024, 655, 124044. [Google Scholar] [CrossRef]
- Alshammari, N.D.; Elkanayati, R.; Vemula, S.K.; Al Shawakri, E.; Uttreja, P.; Almutairi, M.; Repka, M.A. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024, 25, 236. [Google Scholar] [CrossRef]
- Srinivasan, P.; Almutairi, M.; Youssef, A.A.A.; Almotairy, A.; Bandari, S.; Repka, M.A. Numerical Simulation of Five Different Screw Configurations Used during the Preparation of Hot-Melt Extruded Kollidon® and Soluplus® Based Amorphous Solid Dispersions Containing Indomethacin. J. Drug Deliv. Sci. Technol. 2023, 85, 10. [Google Scholar] [CrossRef]
- Almotairy, A.; Alyahya, M.; Althobaiti, A.; Almutairi, M.; Bandari, S.; Ashour, E.A.; Repka, M.A. Disulfiram 3D Printed Film Produced via Hot-Melt Extrusion Techniques as a Potential Anticervical Cancer Candidate. Int. J. Pharm. 2023, 635, 12270. [Google Scholar] [CrossRef]
- Uhumwangho, M.U.; Ramana, M.K.V. In-Vitro Characterization of Optimized Multi-Unit Dosage Forms of Theophylline and Its Solid State Characterisation. J. Appl. Sci. Environ. Manag. 2011, 15, 649–655. [Google Scholar]
- Mokra, D.; Mokry, J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int. J. Mol. Sci. 2021, 22, 1929. [Google Scholar] [CrossRef] [PubMed]
- Aitipamula, S.; Wong, A.B.H.; Kanaujia, P. Evaluating Suspension Formulations of Theophylline Cocrystals with Artificial Sweeteners. J. Pharm. Sci. 2018, 107, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hornedo, N.; Lechuga-Ballesteros, D.; Wu, H.-J. Phase Transition and Heterogeneous/Epitaxial Nucleation of Hydrated and Anhydrous Theophylline Crystals. Int. J. Pharm. 1992, 85, 149–162. [Google Scholar] [CrossRef]
- Available online: https://bitterdb.agri.huji.ac.il/compound.php?mode_organism=default&id=514 (accessed on 22 March 2025).
- Burapapadh, K.; Warintaksa, P.; Ruksapram, S.; Saokham, P. Development of Taste-Masked Enteric Granules Containing Diclofenac Sodium Utilizing Eudragit® E PO as a Taste-Masking Agent. Sci. Eng. Health Stud. 2024, 18, 24050016. [Google Scholar] [CrossRef]
- Mashaqbeh, H.; Obaidat, R.; Alsmadi, M.M.; Athamneh, T. Comparison between Solvent Evaporation and Supercritical CO2 Technology in Taste-Masking of Azithromycin Bitter-Taste Using PH-Sensitive Eudragit EPO or Eudragit S100 Polymers. J. Appl. Pharm. Sci. 2024, 14, 131–138. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef]
- Keeley, A.; Teo, M.; Ali, Z.; Frost, J.; Ghimire, M.; Rajabi-Siahboomi, A.; Orlu, M.; Tuleu, C. In Vitro Dissolution Model Can Predict the in Vivo Taste Masking Performance of Coated Multiparticulates. Mol. Pharm. 2019, 16, 2095–2105. [Google Scholar] [CrossRef]
- Available online: https://pharma.basf.com/files/brochures/Investigation_the_impact_of_Kollicoat_formulation_concepts_taste_masking_functionality.pdf (accessed on 22 March 2025).
- Pradhan, A. A Study on the Taste Masking Ability of Kollicoat® Mae 100-55 on Caffeine Citrate via Hot Melt Extrusion Technology. Mater’s Thesis, The University of Mississippi, Oxford, MS, USA, 2018. [Google Scholar]
- Nukala, P.K.; Palekar, S.; Patki, M.; Fu, Y.; Patel, K. Multi-Dose Oral Abuse Deterrent Formulation of Loperamide Using Hot Melt Extrusion. Int. J. Pharm. 2019, 569, 118629. [Google Scholar] [CrossRef]
- Goyanes, A.; Kobayashi, M.; Martínez-Pacheco, R.; Gaisford, S.; Basit, A.W. Fused-Filament 3D Printing of Drug Products: Microstructure Analysis and Drug Release Characteristics of PVA-Based Caplets. Int. J. Pharm. 2016, 514, 290–295. [Google Scholar] [CrossRef]
- Tung, N.T.; Tran, C.S.; Nguyen, T.L.; Hoang, T.; Trinh, T.D.; Nguyen, T.N. Formulation and Biopharmaceutical Evaluation of Bitter Taste Masking Microparticles Containing Azithromycin Loaded in Dispersible Tablets. Eur. J. Pharm. Biopharm. 2018, 126, 187–200. [Google Scholar] [CrossRef]
- Muhindo, D.; Ashour, E.A.; Almutairi, M.; Repka, M.A. Development and Evaluation of Raloxifene Hydrochloride-Loaded Subdermal Implants Using Hot-Melt Extrusion Technology. Int. J. Pharm. 2022, 622, 121834. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P. Application of Thermal Analysis to Evaluate Pharmaceutical Preparations Containing Theophylline. Pharmaceuticals 2022, 15, 1268. [Google Scholar] [CrossRef] [PubMed]
- Nyamba, I.; Jennotte, O.; Sombié, C.B.; Lechanteur, A.; Sacre, P.Y.; Djandé, A.; Semdé, R.; Evrard, B. Preformulation Study for the Selection of a Suitable Polymer for the Development of Ellagic Acid-Based Solid Dispersion Using Hot-Melt Extrusion. Int. J. Pharm. 2023, 641, 123088. [Google Scholar] [CrossRef]
- Sakkal, M.; Arafat, M.; Yuvaraju, P.; Beiram, R.; Ali, L.; Altarawneh, M.; Hajamohideen, A.R.; AbuRuz, S. Effect of Hydration Forms and Polymer Grades on Theophylline Controlled-Release Tablet: An Assessment and Evaluation. Pharmaceuticals 2024, 17, 271. [Google Scholar] [CrossRef] [PubMed]
- Rokhade, A.P.; Shelke, N.B.; Patil, S.A.; Aminabhavi, T.M. Novel Interpenetrating Polymer Network Microspheres of Chitosan and Methylcellulose for Controlled Release of Theophylline. Carbohydr. Polym. 2007, 69, 678–687. [Google Scholar] [CrossRef]
- Georgieva, Y.; Kassarova, M.; Kokova, V.; Apostolova, E.; Pilicheva, B. Taste Masking of Enalapril Maleate by Microencapsulation in Eudragit EPO® Microparticles. Pharmazie 2020, 75, 61–69. [Google Scholar] [CrossRef]
- Pein, M.; Preis, M.; Eckert, C.; Kiene, F.E. Taste-Masking Assessment of Solid Oral Dosage Forms—A Critical Review. Int. J. Pharm. 2014, 465, 239–254. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Clapham, D.; Seleznev, B.; Lord, K.; Vlasov, Y. Electronic Tongue for Pharmaceutical Analytics: Quantification of Tastes and Masking Effects. Anal. Bioanal. Chem. 2004, 380, 36–45. [Google Scholar] [CrossRef]
- Petrovick, G.F.; Breitkreutz, J.; Pein-Hackelbusch, M. Taste-Masking Properties of Solid Lipid Based Micropellets Obtained by Cold Extrusion-Spheronization. Int. J. Pharm. 2016, 506, 361–370. [Google Scholar] [CrossRef]
- Uchida, T. Taste Sensor Assessment of Bitterness in Medicines: Overview and Recent Topics. Sensors 2024, 24, 4799. [Google Scholar] [CrossRef]
- Alshetaili, A.S.; Almutairy, B.K.; Tiwari, R.V.; Morott, J.T.; Alshehri, S.M.; Feng, X.; Alsulays, B.B.; Park, J.-B.; Zhang, F.; Repka, M.A. Preparation and Evaluation of Hot-Melt Extruded Patient-Centric Ketoprofen Mini-Tablets. Curr. Drug Deliv. 2016, 13, 730–741. [Google Scholar] [CrossRef]
- SPI Pharma, Actimask®: Taste Masked Actives. 2017. Available online: https://www.spipharma.com/media/2860/actimask-psb-oct-2017.pdf (accessed on 22 March 2025).
- Karagianni, A.; Kachrimanis, K.; Nikolakakis, I. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics 2018, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.G.; Banella, S.; Serajuddin, A.T.M. Moisture Sorption by Polymeric Excipients Commonly Used in Amorphous Solid Dispersions and Its Effect on Glass Transition Temperature: III. Methacrylic Acid-Methyl Methacrylate and Related Copolymers (Eudragit®). Int. J. Pharm. 2023, 636, 122745. [Google Scholar] [CrossRef] [PubMed]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q.T. Pharmaceutical Amorphous Solid Dispersion: A Review of Manufacturing Strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef]
- Buckley, L.A.; Salunke, S.; Thompson, K.; Baer, G.; Fegley, D.; Turner, M.A. Challenges and strategies to facilitate formulation development of pediatric drug products: Safety qualification of excipients. Int. J. Pharm. 2018, 536, 563–569. [Google Scholar]
- Saito, J.; Agrawal, A.; Patravale, V.; Pandya, A.; Orubu, S.; Zhao, M.; Andrews, G.P.; Petit-Turcotte, C.; Landry, H.; Croker, A.; et al. The Current States, Challenges, Ongoing Efforts, and Future Perspectives of Pharmaceutical Excipients in Pediatric Patients in Each Country and Region. Children 2022, 9, 453. [Google Scholar] [CrossRef]
Stage | No. | TPL | PEG 1500 | Polymer | Polymer Name | Temperature | Screw Speed | Torque |
---|---|---|---|---|---|---|---|---|
(% w/w) | (°C) | RPM | N·m | |||||
Stage I | F1 | 10 | 30 | 60 | Kollicoat® Smartseal 100P (SS 100P) | 130 | 100 | 1 |
F2 | 20 | 30 | 50 | 120 | 100 | 1 | ||
F3 | 30 | 30 | 40 | 110 | 100 | 1 | ||
F4 | 10 | 20 | 70 | 140 | 100 | 1 | ||
F5 | 20 | 20 | 60 | 130 | 100 | 1 | ||
F6 | 30 | 20 | 50 | 130 | 100 | 2 | ||
Stage II | F7 | 20 | 20 | 60 | Eudragit® EPO | 110 | 100 | 1 |
F8 | 20 | 20 | 60 | Kollicoat® MAE 100-55 | 130 | 100 | 2 |
Ingredient | Description | Wavelength cm−1 | References |
---|---|---|---|
Theophylline | N-H stretching vibration C-H aliphatic and aromatic stretching vibrations C=O stretching vibration N-H bending vibration | 3120 3047, 2986, 2918 1705, 1657 1559 | [48] |
PEG 1500 | C-H stretching vibration C-H bending C-O-C stretching vibration | 2877 1467 1059 | [24] |
Kollicoat® MAE 100-55 | -OH stretching vibration Ester C=O and carboxyl group stretching vibration C-O-C ester stretching C-H stretching vibration | 3528 1725, 1698 1151 2991, 2926 | |
Eudragit EPO | Dimethyl amino group N-CH3 stretching vibration C=O stretching vibration C-H bending C-O-C stretching | 2950 1725 1450 1139 | [49] |
Kollicoat® Smartseal 100-P | Tertiary amine | 2950 | |
C-H aliphatic and aromatic stretching vibrations | 2805 | ||
Ester C=O stretching vibration | 1725 | ||
C-O stretching | 1143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komanduri, N.; Almutairi, M.; Elkanayati, R.M.; Dumpa, N.; Butreddy, A.; Bandari, S.; Repka, M.A. Kollicoat® Smartseal 100P for Developing Theophylline Pellets: Exploring Taste-Masking Potential for Pediatric Applications. Pharmaceutics 2025, 17, 413. https://doi.org/10.3390/pharmaceutics17040413
Komanduri N, Almutairi M, Elkanayati RM, Dumpa N, Butreddy A, Bandari S, Repka MA. Kollicoat® Smartseal 100P for Developing Theophylline Pellets: Exploring Taste-Masking Potential for Pediatric Applications. Pharmaceutics. 2025; 17(4):413. https://doi.org/10.3390/pharmaceutics17040413
Chicago/Turabian StyleKomanduri, Neeraja, Mashan Almutairi, Rasha M. Elkanayati, Nagireddy Dumpa, Arun Butreddy, Suresh Bandari, and Michael A. Repka. 2025. "Kollicoat® Smartseal 100P for Developing Theophylline Pellets: Exploring Taste-Masking Potential for Pediatric Applications" Pharmaceutics 17, no. 4: 413. https://doi.org/10.3390/pharmaceutics17040413
APA StyleKomanduri, N., Almutairi, M., Elkanayati, R. M., Dumpa, N., Butreddy, A., Bandari, S., & Repka, M. A. (2025). Kollicoat® Smartseal 100P for Developing Theophylline Pellets: Exploring Taste-Masking Potential for Pediatric Applications. Pharmaceutics, 17(4), 413. https://doi.org/10.3390/pharmaceutics17040413