Next Issue
Volume 16, October
Previous Issue
Volume 16, August
 
 

Pharmaceutics, Volume 16, Issue 9 (September 2024) – 131 articles

Cover Story (view full-size image): Drug Delivery Systems (DDSs) represent an emerging focus for many researchers due to all the challenges that drugs face in reaching targeting sites through various barriers. Protein-based DDSs are gaining significant attention in the pharmaceutical field for their potential to revolutionize targeted and efficient drug delivery, offering advantages such as safety, biocompatibility, and biodegradability, making them a promising alternative to synthetic polymers. Protein-based carriers, like those derived from gelatin, albumin, collagen, gliadin, and silk proteins, show exceptional stability under physiological conditions and enable controlled, sustained drug release, improving therapeutic efficacy. This review highlights current trends, challenges, and future perspectives in protein-based DDSs, emphasizing their impact on modern therapeutics. View this paper 
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 3719 KiB  
Article
Cyclin-Dependent Kinase 8 Represents a Positive Regulator of Cytomegalovirus Replication and a Novel Host Target for Antiviral Strategies
by Debora Obergfäll, Markus Wild, Mona Sommerer, Malena Barillas Dahm, Jintawee Kicuntod, Julia Tillmanns, Melanie Kögler, Josephine Lösing, Kishore Dhotre, Regina Müller, Christina Wangen, Sabrina Wagner, Quang V. Phan, Lüder Wiebusch, Katarína Briestenská, Jela Mistríková, Lauren Kerr-Jones, Richard J. Stanton, Sebastian Voigt, Friedrich Hahn and Manfred Marschalladd Show full author list remove Hide full author list
Pharmaceutics 2024, 16(9), 1238; https://doi.org/10.3390/pharmaceutics16091238 - 23 Sep 2024
Viewed by 747
Abstract
Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates [...] Read more.
Background. Cyclin-dependent kinase 8 (CDK8) is a multifaceted regulator and represents a catalytic component of the transcriptional Mediator complex. CDK8 activity, on the one hand, increases transcriptional elongation by the recruitment of Mediator/super elongation complexes, but, on the other hand, negatively regulates CDK7-controlled transcriptional initiation through inactivating cyclin H phosphorylation. Recently, these combined properties of CDK8 have also suggested its rate-limiting importance for herpesviral replication. Objectives. In this paper, we focused on human cytomegalovirus (HCMV) and addressed the question of whether the pharmacological inhibition or knock-down of CDK8 may affect viral replication efficiency in cell culture models. Methods. A number of human and animal herpesviruses, as well as non-herpesviruses, were used to analyze the importance of CDK8 for viral replication in cell culture models, and to assess the antiviral efficacy of CDK8 inhibitors. Results. Using clinically relevant CDK8 inhibitors (CCT-251921, MSC-2530818, and BI-1347), HCMV replication was found strongly reduced even at nanomolar drug concentrations. The EC50 values were consistent for three different HCMV strains (i.e., AD169, TB40, and Merlin) analyzed in two human cell types (i.e., primary fibroblasts and astrocytoma cells), and the drugs comprised a low level of cytotoxicity. The findings highlighted the following: (i) the pronounced in vitro SI values of anti-HCMV activity obtained with CDK8 inhibitors; (ii) a confirmation of the anti-HCMV efficacy by CDK8–siRNA knock-down; (iii) a CDK8-dependent reduction in viral immediate early, early, and late protein levels; (iv) a main importance of CDK8 for viral late-stage replication; (v) several mechanistic aspects, which point to a strong impact on viral progeny production and release, but a lack of CDK8 relevance for viral entry or nuclear egress; (vi) a significant anti-HCMV drug synergy for combinations of inhibitors against host CDK8 and the viral kinase vCDK/pUL97 (maribavir); (vii) finally, a broad-spectrum antiviral activity, as seen for the comparison of selected α-, β-, γ-, and non-herpesviruses. Conclusions. In summary, these novel data provide evidence for the importance of CDK8 as a positive regulator of herpesviral replication efficiency, and moreover, suggest its exploitability as an antiviral target for novel strategies of host-directed drug development. Full article
Show Figures

Figure 1

28 pages, 1603 KiB  
Review
Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology
by Dmitriy Ovcharenko, Dmitry Mukhin and Galina Ovcharenko
Pharmaceutics 2024, 16(9), 1237; https://doi.org/10.3390/pharmaceutics16091237 - 23 Sep 2024
Viewed by 1072
Abstract
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of [...] Read more.
Cancer remains a leading cause of death globally. Cancer patients often seek alternative therapies in addition to, or instead of, conventional treatments like chemotherapy, radiation, and surgery. The progress in medical advancements and early detection provides more treatment options; however, the development of cancer drugs requires a significant amount of time, demands substantial investments, and results in an overall low percent of regulatory approval. The complex relationship between patent protection and pharmaceutical innovation complicates cancer drug development and contributes to high mortality rates. Adjusting patent criteria for alternative cancer therapeutics could stimulate innovation, enhance treatment options, and ultimately improve outcomes for cancer patients. This article explores the potential of alternative cancer therapeutics, chemopreventive agents, natural products, off-patent drugs, generic unpatentable chemicals, and repurposed drugs in cancer treatment, emphasizing the mechanisms and therapeutic potential of these unconventional compounds as combinatorial cancer therapies. The biological pathways, therapeutic effects, and potential to enhance existing therapies are reviewed, demonstrating their cost-effective and accessible options as adjuvant cancer therapies. Full article
Show Figures

Figure 1

19 pages, 4062 KiB  
Article
Molded Round Window Niche Implant as a Dexamethasone Delivery System in a Cochlear Implant-Trauma Animal Model
by Chunjiang Wei, Ziwen Gao, Robert Mau, Thomas Eickner, Gabor Jüttner, Nicklas Fiedler, Hermann Seitz, Thomas Lenarz and Verena Scheper
Pharmaceutics 2024, 16(9), 1236; https://doi.org/10.3390/pharmaceutics16091236 - 23 Sep 2024
Viewed by 606
Abstract
Background: Preserving residual hearing after cochlear implant (CI) surgery remains a crucial challenge. The application of dexamethasone (DEX) has been proven to positively affect residual hearing. To deliver DEX in a localized and controlled way, a round window niche implant (RNI), allowing drug [...] Read more.
Background: Preserving residual hearing after cochlear implant (CI) surgery remains a crucial challenge. The application of dexamethasone (DEX) has been proven to positively affect residual hearing. To deliver DEX in a localized and controlled way, a round window niche implant (RNI), allowing drug diffusion via the round window membrane into the cochlea, may be used. To prove this concept, an RNI for guinea pigs as a CI-trauma model was manufactured by molding and tested for its drug release in vitro and biological effects in vivo. Methods: The RNIs were molded using silicone containing 10% DEX. Release was analyzed over time using high-performance liquid chromatography (HPLC). Fourteen adult guinea pigs were randomly assigned to two groups (CI or CI + RNI group). All animals received a unilateral CI electrode insertion trauma followed by CI insertion. The CI + RNI group was additionally implanted with an RNI containing 10% DEX. Animals were followed up for 4 weeks. Acoustically evoked auditory brainstem response and impedance measurement, micro-computed tomography (µCT) imaging, and histology were performed for evaluation. Results: DEX was released for more than 250 days in vitro, with an initial burst followed by a slower release over time. Comparing the hearing threshold shift (from day 0 to day 28) of the CI and CI + RNI groups, significant differences were observed at 32 and 40 kHz. The impedance shift at basal contacts was lower in the CI + RNI group than in the CI group. Moreover, the fibrosis in the lower basal turn was reduced in the CI + RNI group in contrast to the CI group. Conclusions: The RNI containing 10% DEX has anti-inflammatory potential concerning fibrosis inhibition and has beneficial effects on hearing preservation at high frequencies. Full article
Show Figures

Figure 1

12 pages, 1289 KiB  
Article
Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency
by Emilia Martula, Beata Morak-Młodawska, Małgorzata Jeleń and Patrick Nwabueze Okechukwu
Pharmaceutics 2024, 16(9), 1235; https://doi.org/10.3390/pharmaceutics16091235 - 23 Sep 2024
Viewed by 414
Abstract
Lipophilicity is an essential parameter of a compound that determines the solubility and pharmacokinetic properties that determine the transport of the drug to the molecular target. Dimers of dipyridothiazines are diazaphenothiazine derivatives exhibiting diverse anticancer potential in vitro, which is related to their [...] Read more.
Lipophilicity is an essential parameter of a compound that determines the solubility and pharmacokinetic properties that determine the transport of the drug to the molecular target. Dimers of dipyridothiazines are diazaphenothiazine derivatives exhibiting diverse anticancer potential in vitro, which is related to their affinity for histone deacetylase. In this study, the lipophilicity of 16 isomeric dipyridothiazine dimers was investigated theoretically and experimentally by reversed-phase thin-layer chromatography (RP-TLC) in an acetone–TRIS buffer (pH = 7.4). The relative lipophilicity parameter RM0 and specific hydrophobic surface area b were significantly intercorrelated, showing congeneric classes of dimers. The parameter RM0 was transformed into parameter logPTLC by use of the calibration curve. Molecular descriptors, ADMET parameters and probable molecular targets were determined in silico for analysis of the pharmacokinetic profile of the tested compounds showing anticancer activity. The analyzed compounds were tested in the context of Lipinski’s rule of five, Ghose’s rule and Veber’s rule, confirming their bioavailability. Full article
(This article belongs to the Special Issue Role of Pharmacokinetics in Drug Development and Evaluation)
Show Figures

Figure 1

14 pages, 2300 KiB  
Article
Glioblastoma Multiforme: Sensitivity to Antimicrobial Peptides LL-37 and PG-1, and Their Combination with Chemotherapy for Predicting the Overall Survival of Patients
by Alexander N. Chernov, Sofia S. Skliar, Alexander V. Kim, Anna Tsapieva, Sarng S. Pyurveev, Tatiana A. Filatenkova, Marina V. Matsko, Sergey D. Ivanov, Olga V. Shamova and Alexander N. Suvorov
Pharmaceutics 2024, 16(9), 1234; https://doi.org/10.3390/pharmaceutics16091234 - 22 Sep 2024
Viewed by 880
Abstract
Background/Objectives: Glioblastomas (GBMs) are the most malignant and intractable of all cancers, with an unfavorable clinical prognosis for affected patients. The objective was to analyze the sensitivity of GBM cells to the antimicrobial peptides (AMPs) cathelicidin (LL-37) and protegrin-1 (PG-1), both alone and [...] Read more.
Background/Objectives: Glioblastomas (GBMs) are the most malignant and intractable of all cancers, with an unfavorable clinical prognosis for affected patients. The objective was to analyze the sensitivity of GBM cells to the antimicrobial peptides (AMPs) cathelicidin (LL-37) and protegrin-1 (PG-1), both alone and in combination with chemotherapy, to predict overall survival (OS) in the patients. Methods: The study was conducted on 27 GBM patients treated in the neurosurgical department of the Almazov Medical Research Centre (Saint Petersburg, Russia) from 2021 to 2024. The cytotoxic effects of chemotherapy, AMPs, and their combinations on brain tumor cells were assessed by an MTT assay using a 50% inhibitory concentration (IC50). Results: In GBM cells from the patients, LL-37 and PG-1 exhibited strong anticancer effects, surpassing those of chemotherapy drugs. These LL-37 and PG-1 anticancer effects were associated with a statistically significant increase in life expectancy and OS in GBM patients. These findings were confirmed by experiments on rats with C6 glioma, where the intranasal administration of LL-37 (300 μM) and PG-1 (600 μM) increased the life expectancy of the animals to 69 and 55 days, respectively, compared to 24 days in the control group (HR = 4.139, p = 0.0005; HR = 2.542, p = 0.0759). Conclusions: Additionally, the combination of LL-37 and PG-1 with chemotherapy drugs showed that a high IC50 of LL-37 with cisplatin (cutoff > 800 μM) in GBM cells was associated with increased life expectancy (19 vs. 5 months, HR = 4.708, p = 0.0101) and OS in GBM patients. These combinations could be used in future GBM treatments. Full article
Show Figures

Figure 1

23 pages, 4533 KiB  
Article
Exploring Cationic Guar Gum: Innovative Hydrogels and Films for Enhanced Wound Healing
by Kamila Gabrieli Dallabrida, Willer Cezar Braz, Crisleine Marchiori, Thainá Mayer Alves, Luiza Stolz Cruz, Giovanna Araujo de Morais Trindade, Patrícia Machado, Lucas Saldanha da Rosa, Najeh Maissar Khalil, Fabiane Gomes de Moraes Rego, André Ricardo Fajardo, Luana Mota Ferreira, Marcel Henrique Marcondes Sari and Jéssica Brandão Reolon
Pharmaceutics 2024, 16(9), 1233; https://doi.org/10.3390/pharmaceutics16091233 - 22 Sep 2024
Viewed by 649
Abstract
Background/Objectives: This study developed and characterized hydrogels (HG-CGG) and films (F-CGG) based on cationic guar gum (CGG) for application in wound healing. Methods: HG-CGG (2% w/v) was prepared by gum thickening and evaluated for pH, stability, spreadability, and viscosity. F-CGG [...] Read more.
Background/Objectives: This study developed and characterized hydrogels (HG-CGG) and films (F-CGG) based on cationic guar gum (CGG) for application in wound healing. Methods: HG-CGG (2% w/v) was prepared by gum thickening and evaluated for pH, stability, spreadability, and viscosity. F-CGG was obtained using an aqueous dispersion of CGG (6% w/v) and the solvent casting method. F-CGG was characterized for thickness, weight uniformity, morphology, mechanical properties, hydrophilicity, and swelling potential. Both formulations were evaluated for bioadhesive potential on intact and injured porcine skin, as well as antioxidant activity. F-CGG was further studied for biocompatibility using hemolysis and cell viability assays (L929 fibroblasts), and its wound-healing potential by the scratch assay. Results: HG-CGG showed adequate viscosity and spreadability profiles for wound coverage, but its bioadhesive strength was reduced on injured skin. In contrast, F-CGG maintained consistent bioadhesive strength regardless of skin condition (6554.14 ± 540.57 dyne/cm2 on injured skin), presenting appropriate mechanical properties (flexible, transparent, thin, and resistant) and a high swelling capacity (2032 ± 211% after 6 h). F-CGG demonstrated superior antioxidant potential compared to HG-CGG (20.50 mg/mL ABTS+ radical scavenging activity), in addition to exhibiting low hemolytic potential and no cytotoxicity to fibroblasts. F-CGG promoted the proliferation of L929 cells in vitro, supporting wound healing. Conclusions: Therefore, CGG proved to be a promising material for developing formulations with properties suitable for cutaneous use. F-CGG combines bioadhesion, antioxidant activity, biocompatibility, cell proliferation, and potential wound healing, making it promising for advanced wound treatment. Full article
Show Figures

Figure 1

49 pages, 2873 KiB  
Review
Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications
by Ahmad Almatroudi
Pharmaceutics 2024, 16(9), 1232; https://doi.org/10.3390/pharmaceutics16091232 - 21 Sep 2024
Cited by 1 | Viewed by 797
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each [...] Read more.
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability—key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential. Full article
Show Figures

Figure 1

11 pages, 922 KiB  
Article
Automated Production of [68Ga]Ga-Desferrioxamine B on Two Different Synthesis Platforms
by Martin Kraihammer, Miloš Petřík, Christine Rangger, Michael Gabriel, Hubertus Haas, Bernhard Nilica, Irene Virgolini and Clemens Decristoforo
Pharmaceutics 2024, 16(9), 1231; https://doi.org/10.3390/pharmaceutics16091231 - 21 Sep 2024
Viewed by 496
Abstract
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B—a radiolabelled siderophore—shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this [...] Read more.
Background/Objectives: PET imaging of bacterial infection could potentially provide added benefits for patient care through non-invasive means. [68Ga]Ga-desferrioxamine B—a radiolabelled siderophore—shows specific uptake by human-pathogenic bacteria like Staphylococcus aureus or Pseudomonas aeruginosa and sufficient serum stability for clinical application. In this report, we present data for automated production of [68Ga]Ga-desferrioxamine B on two different cassette-based synthesis modules (Modular-Lab PharmTracer and GRP 3V) utilising commercially obtainable cassettes together with a licensed 68Ge/68Ga radionuclide generator. Methods: Quality control, including the determination of radiochemical purity, as well as a system suitability test, was set up via RP-HPLC on a C18 column. The two described production processes use an acetic acid/acetate buffer system with ascorbic acid as a radical scavenger for radiolabelling, yielding ready-to-use formulations with sufficient activity yield. Results: Batch data analysis demonstrated radiochemical purity of >95% by RP-HPLC combined with ITLC and excellent stability up to 2 h after synthesis. Specifications for routine production were set up and validated with four masterbatches for each synthesis module. Conclusions: Based on this study, an academic clinical trial for imaging of bacterial infection was initiated. Both described synthesis methods enable automated production of [68Ga]Ga-desferrioxamine B in-house with high reproducibility for clinical application. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

17 pages, 8494 KiB  
Article
Enhancing Radiotherapy Sensitivity in Prostate Cancer with Lentinan-Functionalized Selenium Nanoparticles: Mechanistic Insights and Therapeutic Potential
by Yani Zou, Helin Xu, Xiu Wu, Xuesong Liu and Jianfu Zhao
Pharmaceutics 2024, 16(9), 1230; https://doi.org/10.3390/pharmaceutics16091230 - 21 Sep 2024
Viewed by 688
Abstract
Radiation therapy is a cornerstone of prostate cancer (PCa) treatment. However, its limited tumor sensitivity and severe side effects restrict its clinical utility. Lentinan-functionalized selenium nanoparticles (LET-SeNPs) have shown promise in enhancing radiotherapy sensitivity and exhibiting antitumor activity. In this study, we investigated [...] Read more.
Radiation therapy is a cornerstone of prostate cancer (PCa) treatment. However, its limited tumor sensitivity and severe side effects restrict its clinical utility. Lentinan-functionalized selenium nanoparticles (LET-SeNPs) have shown promise in enhancing radiotherapy sensitivity and exhibiting antitumor activity. In this study, we investigated the radiotherapy sensitization mechanism of LET-SeNPs in PCa. Our results demonstrate that the combination of LET-SeNPs and X-ray therapy (4 Gy) significantly inhibited the growth and colony formation of PCa cells by inducing apoptosis, surpassing the effects of individual treatments. This combined approach modulated DNA damage through the p53, MAPK (mitogen-activated protein kinase), and AKT pathways. Furthermore, LET-SeNPs increased PC3 cell sensitivity to X-ray-induced apoptosis by downregulating TrxR (Thioredoxin reductase) expression and inducing reactive oxygen species (ROS) overproduction, thereby activating mitochondria-mediated apoptosis signaling pathways. Additionally, LET-SeNPs regulated PARP (poly (ADP-ribose) polymerase) to prevent DNA damage repair. In vivo studies confirmed that the combination treatment inhibited PCa growth by synergistically activating the p53 pathway to induce cell apoptosis. These findings highlight LET-SeNPs’ potential as a radiotherapy sensitizer and suggest that combining LET-SeNPs with X-ray therapy could be a promising strategy for clinical application, leveraging selenium-modified nanoparticles’ antitumor effects. Full article
Show Figures

Figure 1

15 pages, 2077 KiB  
Article
Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets
by Monika Trofimiuk, Małgorzata Sznitowska and Katarzyna Winnicka
Pharmaceutics 2024, 16(9), 1229; https://doi.org/10.3390/pharmaceutics16091229 - 20 Sep 2024
Viewed by 528
Abstract
The aim of the study was to propose pharmacy-compounded oral gels as a new and alternative dosage form that is attractive to children as having a better masking taste than syrups and reducing the risk of spilling. The application and physical properties of [...] Read more.
The aim of the study was to propose pharmacy-compounded oral gels as a new and alternative dosage form that is attractive to children as having a better masking taste than syrups and reducing the risk of spilling. The application and physical properties of the gels prepared with cellulose derivatives (hydroxyethylcellulose and carmellose sodium) or carbomers were evaluated. The results of the study showed the most suitable consistency, viscosity, and organoleptic properties for gels prepared with carbomer and cellulose derivatives at concentrations of 0.75% and 2.0%, respectively. The microbial stability of the gels was guaranteed by the use of methylparaben and potassium sorbate. VAL (valsartan) and CC (candesartan cilexetil) tablets, often used off-label in children, were pulverized and suspended in the hydrogel bases, resulting in final drug concentrations of 4 mg/g and 1 mg/g, respectively. There was no significant change in viscosity and consistency parameters when the pulverized tablets were added, and only small changes in viscosity and consistency were observed during 35 days of storage, especially in the gels with sodium carmellose and candesartan. On the basis of the drug assay, an expiry date of 25 °C was recommended: 35 days for valsartan and 14 days for candesartan preparations. Full article
Show Figures

Figure 1

23 pages, 9925 KiB  
Review
Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment
by Xuejia Kang, Nur Mita, Lang Zhou, Siqi Wu, Zongliang Yue, R. Jayachandra Babu and Pengyu Chen
Pharmaceutics 2024, 16(9), 1228; https://doi.org/10.3390/pharmaceutics16091228 - 20 Sep 2024
Viewed by 913
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and [...] Read more.
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes. Full article
Show Figures

Figure 1

15 pages, 2776 KiB  
Article
Development of Biolayer Interferometry (BLI)-Based Double-Stranded RNA Detection Method with Application in mRNA-Based Therapeutics and Vaccines
by Dharia Sara Silas, Bindiya Juneja, Keerat Kaur, Muralikrishna Narayanareddy Gari, Yingjian You, Youmi Moon, Yizhuo Chen, Srishti Arora, Johanna Hansen, Kathir Muthusamy, Yue Fu, Nisha Palackal and Erica A. Pyles
Pharmaceutics 2024, 16(9), 1227; https://doi.org/10.3390/pharmaceutics16091227 - 19 Sep 2024
Viewed by 1257
Abstract
Background: In vitro-transcribed (IVT) mRNA has been established as a promising platform for therapeutics and vaccine development. Double-stranded RNA (dsRNA) is a major impurity of IVT mRNA and can trigger unfavored immune responses, potentially causing adverse events in patients. Existing dsRNA detection and [...] Read more.
Background: In vitro-transcribed (IVT) mRNA has been established as a promising platform for therapeutics and vaccine development. Double-stranded RNA (dsRNA) is a major impurity of IVT mRNA and can trigger unfavored immune responses, potentially causing adverse events in patients. Existing dsRNA detection and quantitation methods, such as gel electrophoresis, ELISA, or homogeneous time-resolved fluorescence (HTRF), have low sensitivity or are time-consuming. A recently published lateral flow immunoassay (LFSA) was shown to be fast, but it lacks the sensitivity for dsRNA with uridine modifications. Methods: In this study, we provided a possible explanation for the reduced sensitivity of existing quantitation methods for dsRNA with modified uridines by characterizing the binding affinities of commonly used anti-dsRNA antibodies. Then, a rapid and sensitive biolayer interferometry (BLI) dsRNA detection assay utilizing Flock House Virus (FHV) B2 protein was developed to overcome the challenges in dsRNA detection and the reduced sensitivity. Results: This assay allows the detection of dsRNA with different uridine modifications (ψ, m1ψ, 5 moU) with similar sensitivity as dsRNA without modification. Furthermore, we demonstrated this method can be used to quantify both short and long dsRNA, as well as hairpin-structured dsRNA, providing a more comprehensive detection for dsRNA impurities. Moreover, we applied this assay to monitor dsRNA removal through a purification process. Conclusions: Taken together, this BLI method could enable real-time monitoring of impurities in IVT mRNA production to prevent immunogenicity stemming from dsRNA. Full article
(This article belongs to the Special Issue State-of-Art in mRNA Therapeutics and Gene Delivery)
Show Figures

Graphical abstract

15 pages, 4031 KiB  
Article
Magnetic Nanoparticles with On-Site Azide and Alkyne Functionalized Polymer Coating in a Single Step through a Solvothermal Process
by Romualdo Mora-Cabello, David Fuentes-Ríos, Lidia Gago, Laura Cabeza, Ana Moscoso, Consolación Melguizo, José Prados, Francisco Sarabia and Juan Manuel López-Romero
Pharmaceutics 2024, 16(9), 1226; https://doi.org/10.3390/pharmaceutics16091226 - 19 Sep 2024
Viewed by 751
Abstract
Background/Objectives: Magnetic Fe3O4 nanoparticles (MNPs) are becoming more important every day. We prepared MNPs in a simple one-step reaction by following the solvothermal method, assisted by azide and alkyne functionalized polyethylene glycol (PEG400) polymers, as well as by PEG6000 [...] Read more.
Background/Objectives: Magnetic Fe3O4 nanoparticles (MNPs) are becoming more important every day. We prepared MNPs in a simple one-step reaction by following the solvothermal method, assisted by azide and alkyne functionalized polyethylene glycol (PEG400) polymers, as well as by PEG6000 and the polyol β-cyclodextrin (βCD), which played a crucial role as electrostatic stabilizers, providing polymeric/polyol coatings around the magnetic cores. Methods: The composition, morphology, and magnetic properties of the nanospheres were analyzed using Transmission Electron and Atomic Force Microscopies (TEM, AFM), Nuclear Magnetic Resonance (NMR), X-ray Diffraction Diffractometry (XRD), Fourier-Transform Infrared Spectroscopy (FT-IR), Matrix-Assisted Laser Desorption/Ionization (MALDI) and Vibrating Sample Magnetometry (VSM). Results: The obtained nanoparticles (@Fe3O4-PEGs and @Fe3O4-βCD) showed diameters between 90 and 250 nm, depending on the polymer used and the Fe3O4·6H2O precursor concentration, typically, 0.13 M at 200 °C and 24 h of reaction. MNPs exhibited superparamagnetism with high saturation mass magnetization at room temperature, reaching values of 59.9 emu/g (@Fe3O4-PEG6000), and no ferromagnetism. Likewise, they showed temperature elevation after applying an alternating magnetic field (AMF), obtaining Specific Absorption Rate (SAR) values of up to 51.87 ± 2.23 W/g for @Fe3O4-PEG6000. Additionally, the formed systems are susceptible to click chemistry, as was demonstrated in the case of the cannabidiol-propargyl derivative (CBD-Pro), which was synthesized and covalently attached to the azide functionalized surface of @Fe3O4-PEG400-N3. Prepared MNPs are highly dispersible in water, PBS, and citrate buffer, remaining in suspension for over 2 weeks, and non-toxic in the T84 human colon cancer cell line, Conclusions: indicating that they are ideal candidates for biomedical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Applications of Magnetic Nanomaterials)
Show Figures

Figure 1

24 pages, 65791 KiB  
Article
Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil
by Ludmila Motelica, Denisa Ficai, Gabriela Petrisor, Ovidiu-Cristian Oprea, Roxana-Doina Trușcǎ, Anton Ficai, Ecaterina Andronescu, Ariana Hudita and Alina Maria Holban
Pharmaceutics 2024, 16(9), 1225; https://doi.org/10.3390/pharmaceutics16091225 - 19 Sep 2024
Viewed by 731
Abstract
Background: Cellulose derivatives are gaining much attention in medical research due to their excellent properties such as biocompatibility, hydrophilicity, non-toxicity, sustainability, and low cost. Unfortunately, cellulose does not exhibit antimicrobial activity. However, derivatives like hydroxyethyl cellulose represent a proper matrix to incorporate [...] Read more.
Background: Cellulose derivatives are gaining much attention in medical research due to their excellent properties such as biocompatibility, hydrophilicity, non-toxicity, sustainability, and low cost. Unfortunately, cellulose does not exhibit antimicrobial activity. However, derivatives like hydroxyethyl cellulose represent a proper matrix to incorporate antimicrobial agents with beneficial therapeutic effects. Methods: Combining more antimicrobial agents into a single composite material can induce stronger antibacterial activity by synergism. Results: Therefore, we have obtained a hydroxyethyl-cellulose-based material loaded with zinc oxide nanoparticles and cinnamon essential oil as the antimicrobial agents. The cinnamon essential oil was loaded in mesoporous silica particles to control its release. Conclusions: The composite films demonstrated high antibacterial activity against Staphylococcus aureus and Escherichia coli strains, impairing the bacterial cells’ viability and biofilm development. Such antimicrobial films can be used in various biomedical applications such as topical dressings or as packaging for the food industry. Full article
Show Figures

Graphical abstract

17 pages, 2738 KiB  
Article
Deciphering Chemical Rules for Drug Penetration into Strongyloides
by Miguel Marín, Javier Sánchez-Montejo, Sergio Ramos, Antonio Muro, Julio López-Abán and Rafael Peláez
Pharmaceutics 2024, 16(9), 1224; https://doi.org/10.3390/pharmaceutics16091224 - 19 Sep 2024
Viewed by 493
Abstract
Background: Strongyloidiasis, a parasitic infection, presents a significant public health challenge in tropical regions due to the limited repertoire of effective treatments. The screening of chemical libraries against the therapeutically relevant third-stage larvae (L3) of the model parasite Strongyloides venezuelensis yielded meager success [...] Read more.
Background: Strongyloidiasis, a parasitic infection, presents a significant public health challenge in tropical regions due to the limited repertoire of effective treatments. The screening of chemical libraries against the therapeutically relevant third-stage larvae (L3) of the model parasite Strongyloides venezuelensis yielded meager success rates. This situation is reminiscent of Gram-negative bacteria, where drug entry is a limiting factor. Methods: Here, we set out to determine whether similar barriers are in place and establish whether structural and property requirements exist for anti-strongyloides drug discovery. We focused on dyes as their uptake and effects on viability can be independently assessed in the multicellular parasite, thus providing a means to study the possibility of similar entry rules. We tested different dyes in in vitro assays on L3s. Results: We found that staining was necessary to reduce parasite viability, with some dyes achieving anti-strongyloides effects at concentrations similar to those of the reference drug, ivermectin (IV). Some dyes also showed activity against female adults at concentrations well below that of ivermectin. Unfortunately, the most potent dye, Methylene Blue, was unable to prevent the infection in a preliminary in vivo mouse model assay, presumably due to fast dye clearance. Structural analysis showed that positive charges facilitated the access of the compounds to the L3 tissue, thus providing a structural tool for the introduction of activity. For female adults, low globularity is additionally required. As a proof of concept, we added a positive charge to an inactive compound of one of our chemical libraries and re-determined the activity. Conclusions: These findings allow us to establish structural rules for parasite entry that could be of interest for future drug screening or drug development campaigns. These rules might also be applicable to other related parasites. Full article
Show Figures

Figure 1

17 pages, 1508 KiB  
Article
Diagnosis of Prostate Cancer with a Neurotensin–Bombesin Radioligand Combination—First Preclinical Results
by Maria Bibika, Panagiotis Kanellopoulos, Maritina Rouchota, George Loudos, Berthold A. Nock, Eric P. Krenning and Theodosia Maina
Pharmaceutics 2024, 16(9), 1223; https://doi.org/10.3390/pharmaceutics16091223 - 19 Sep 2024
Viewed by 550
Abstract
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity [...] Read more.
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity and therapeutic efficacy. Toward this goal, we explored a first example of a combined application of [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; NTS1R-specific) and [99mTc]Tc-DB7(DB7, N4-PEG2-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; GRPR-specific) in prostate cancer models. Methods: Accordingly, the behavior of [99mTc]Tc-DT11 was compared with that of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture in prostate adenocarcinoma PC-3 cells and xenografts in mice. The impact of stabilizing both radiotracers by Entresto®, as a source of the potent neprilysin inhibitor sacubitrilat, was also investigated. Results: The PC-3 cell binding of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture surpassed that of [99mTc]Tc-DT11. Likewise, the PC-3 tumor uptake of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture at 4 h post-injection was superior (7.70 ± 0.89%IA/g) compared with [99mTc]Tc-DT11 (4.23 ± 0.58%IA/g; p < 0.0001). Treatment with Entresto® led to further enhancement of the tumor uptake (to 11.57 ± 1.92%IA/g; p < 0.0001). Conclusions: In conclusion, this first preclinical study on prostate cancer models revealed clear advantages of dual NTS1R/GRPR targeting, justifying further assessment of this promising concept in other cancer models. Full article
(This article belongs to the Special Issue Peptide–Drug Conjugates for Targeted Delivery)
Show Figures

Figure 1

24 pages, 3085 KiB  
Article
Comprehensive Analysis of Cetuximab Critical Quality Attributes: Impact of Handling on Antigen-Antibody Binding
by Alicia Torres-García, Anabel Torrente-López, Jesús Hermosilla, Amparo Hernández, Antonio Salmerón-García, José Cabeza and Natalia Navas
Pharmaceutics 2024, 16(9), 1222; https://doi.org/10.3390/pharmaceutics16091222 - 19 Sep 2024
Viewed by 579
Abstract
Background/Objectives: Cetuximab, formulated in Erbitux® (5 mg/mL), is a therapeutic monoclonal antibody (mAb) widely used in several cancer treatments. Currently, there is insufficient knowledge about the behavior of cetuximab with regard to the risk associated with its routine handling or unintentional mishandling [...] Read more.
Background/Objectives: Cetuximab, formulated in Erbitux® (5 mg/mL), is a therapeutic monoclonal antibody (mAb) widely used in several cancer treatments. Currently, there is insufficient knowledge about the behavior of cetuximab with regard to the risk associated with its routine handling or unintentional mishandling in hospitals. Forced degradation studies can simulate these conditions and provide insights into the biophysical and biochemical properties of mAbs. Methods: In this study, we conducted a deep physicochemical and functional characterization of the critical quality attributes of cetuximab in control samples and under controlled degraded conditions, including freeze–thaw cycles, heat, agitation, and light exposure. To achieve this purpose, we used a set of proper analytical techniques, including CD, IT-FS, DLS, SE/UHPLC-UV, UHPLC-MS/MS, and ELISA, to check functionality based on antigen–antibody binding. Results: The results revealed that light exposure was the stress stimuli with the greatest impact on the drug product, leading to the formation of non-natural oligomers, fragmentation, and oxidation of methionine residues. Additionally, cetuximab (Erbitux®, 5 mg/mL) showed a tendency to aggregate when submitted to 60 °C for 1 h. In terms of functionality, cetuximab (Erbitux®, 5 mg/mL) samples were found to be affected when subjected to freeze–thaw cycles, 60 °C (1 h), and when exposed to light (daylight with room temperature excursion and accelerated light exposure). Conclusions: Thus, we suggest that Erbitux® (5 mg/mL) should be shielded from these environmental conditions, as they compromise both the safety and efficacy of the drug product. Full article
(This article belongs to the Special Issue Physical and Chemical Stability of Drug Formulation)
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Aerosol of Enoximone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex, Biopharmaceutical Evidence for ARDS Applicability
by Chiara Migone, Brunella Grassiri, Lucia Vizzoni, Angela Fabiano, Baldassare Ferro, Ylenia Zambito and Anna Maria Piras
Pharmaceutics 2024, 16(9), 1221; https://doi.org/10.3390/pharmaceutics16091221 - 19 Sep 2024
Viewed by 509
Abstract
Background: Phosphodiesterase (PDE) inhibitors are gaining interest in the context of pulmonary pathologies. In particular, the PDE3 inhibitor enoximone (ENXM) has shown potential relative to the cure of asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Despite its administration [...] Read more.
Background: Phosphodiesterase (PDE) inhibitors are gaining interest in the context of pulmonary pathologies. In particular, the PDE3 inhibitor enoximone (ENXM) has shown potential relative to the cure of asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Despite its administration via inhalation being planned for use against COVID-19 related ARDS (C-ARDS), presently, no inhalable medicine containing ENXM is available. Objectives: This study aims to develop a new formulation suitable for pulmonary administration of ENXM. Methods: A solution for nebulization, based on the complex between ENXM and Hydroxypropyl-β-Cyclodextrin (HPβCD) (ENXM/HPβCD) is developed. The obtained solution is characterized in terms of aerodynamic distributions and biopharmaceutical features. Results: The evaluation of the aerosol droplets indicates a good bronchi–lung distribution of the drug. Biological evaluations of the air–liquid interface (ALI) in an in vitro lung cell model demonstrates that ENXM/HPβCD is capable of a local direct effect, increasing intracellular cyclic adenosine monophosphate (cAMP) levels and protecting from oxidative stress. Conclusions: This study offers a promising advance in the optimization of enoximone delivery to the lungs. Full article
(This article belongs to the Special Issue Inhalable Drugs for the Treatment of Chronic Respiratory Diseases)
Show Figures

Figure 1

22 pages, 3597 KiB  
Article
Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies
by Chunxia Zhu, Yang Liu, Xiaojun Ji, Yaxuan Si, Xianhao Tao, Xiaohua Zhang and Lifang Yin
Pharmaceutics 2024, 16(9), 1220; https://doi.org/10.3390/pharmaceutics16091220 - 19 Sep 2024
Viewed by 542
Abstract
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the [...] Read more.
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the dual-loaded liposomes containing cytarabine and idarubicin for synergistic effects were proposed and investigated. Methods: The molar ratio of cytarabine and idarubicin for synergistic effects was investigated. The dual-loaded liposomes were prepared and characterized by particle size, zeta potential, encapsulation efficiency, cryo-Transmission electron microscopy (cryo-TEM), and in vitro stability. The in vitro cytotoxicity and cell uptake of liposomes were determined within CCRF-CEM cells. The PK experiments was carried out in male SD rats. The in vivo antitumor effect was carried out within CD-1 nude female mice. The antitumor mechanism of liposomes was investigated. Results: The synergistic molar ratios were found to be in the range of 20:1~40:1. The size distribution of the dual-loaded liposomes was approximately 100 nm with PDI ≤ 0.1, a zeta potential of approximately −30 mV, an entrapment efficiency of cytarabine and idarubicin of >95% with spherical structure and uniform distribution, and in vitro stability for 21 d. The drugs in the liposomes can be quickly uptaken by the leukemia cells. The PK experiments showed that the molar ratio of cytarabine to idarubicin in plasma was maintained at 30:1 within 4 h. The efficacy of liposomes was significantly enhanced. Conclusions: The dual-loaded liposomes containing cytarabine and idarubicin showed enhanced antitumor efficacy. Full article
Show Figures

Figure 1

12 pages, 2394 KiB  
Article
Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode
by Yuya Yoshida, Manami Aoki, Kalin Nagase, Koichi Marubashi, Hiroyuki Kojima, Shoko Itakura, Syuuhei Komatsu, Kenji Sugibayashi and Hiroaki Todo
Pharmaceutics 2024, 16(9), 1219; https://doi.org/10.3390/pharmaceutics16091219 - 18 Sep 2024
Viewed by 591
Abstract
Objectives: Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal (i.d.) site (DEP) with implanted electrodes to achieve a high protein [...] Read more.
Objectives: Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal (i.d.) site (DEP) with implanted electrodes to achieve a high protein expression level was investigated. In addition, DEP application with various intervals with a low application voltage was also evaluated to confirm its effect on protein expression. Methods: Green fluorescent protein (GFP)- and luciferase-encoding DNA were administrated, and GFP and luciferase were evaluated. Results: A higher protein expression level was observed after green fluorescent protein (GFP)- and luciferase-encoding DNA were delivered by i.d. injection followed by DEP application. When luciferase expression was observed with an in vivo imaging system, continuous expression was confirmed over 21 days after i.d. injection followed by DEP at 100 V. This approach provided increased gene expression levels compared with conventional EP methods via the stratum corneum layer. In addition, the effect of application voltage on luciferase expression was investigated; two-time applications (repeated DEP) at 20 V with 5 min intervals showed similar luciferase expression level to single DEP application with 100 V. Histological observations showed the skin became thicker after a single DEP at 100 V, whereas no apparent thickness changes were confirmed after repeated DEP at 20 V with 5 min intervals. Conclusions: This study revealed that direct i.d. voltage application achieved high protein expression levels even at low voltages. Skin is a promising administration site for DNA vaccines, so this approach may be effective for DNA vaccine delivery into skin tissue. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 10180 KiB  
Article
Functionalized PLGA-Based Nanoparticles with Anti-HSV-2 Human Monoclonal Antibody: A Proof of Concept for Early Diagnosis and Targeted Therapy
by Melinda Mariotti, Noah Giacon, Ettore Lo Cascio, Margherita Cacaci, Simona Picchietti, Maura Di Vito, Maurizio Sanguinetti, Alessandro Arcovito and Francesca Bugli
Pharmaceutics 2024, 16(9), 1218; https://doi.org/10.3390/pharmaceutics16091218 - 18 Sep 2024
Viewed by 538
Abstract
Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider time frame. They also hold promise for novel theranostic applications that integrate both diagnostic and therapeutic functions. Pathogens [...] Read more.
Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider time frame. They also hold promise for novel theranostic applications that integrate both diagnostic and therapeutic functions. Pathogens are continuously evolving to try to escape the strategies designed to treat them. Objectives: In this work, we describe the development of a biotechnological device, Nano-Immuno-Probes (NIPs), for early detection and infections treatment. Human Herpes Simplex Virus 2 was chosen as model pathogen. Methods: NIPs consist of PLGA-PEG-Sulfone polymeric NPs conjugated to recombinant Fab antibody fragments targeting the viral glycoprotein G2. NIPs synthesis involved multiple steps and was validated through several techniques. Results: DLS analysis indicated an expected size increase with a good polydispersity index. Z-average and z-potential values were measured for PLGA-PEG-Bis-Sulfone NPs (86.6 ± 10.9 nm; –0.7 ± 0.3 mV) and NIPs (151 ± 10.4 nm; −5.1 ± 1.9 mV). SPR assays confirmed NIPs’ specificity for the glycoprotein G2, with an apparent KD of 1.03 ± 0.61 µM. NIPs exhibited no cytotoxic effects on VERO cells at 24 and 48 h. Conclusions: This in vitro study showed that NIPs effectively target HSV-2, suggesting the potential use of these nanodevices to deliver both contrast agents as well as therapeutic compounds. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

8 pages, 2348 KiB  
Communication
Replication of the Venezuelan Equine Encephalitis Vaccine from a Synthetic PCR Fragment
by Christine Mathew, Colin Tucker, Irina Tretyakova and Peter Pushko
Pharmaceutics 2024, 16(9), 1217; https://doi.org/10.3390/pharmaceutics16091217 - 17 Sep 2024
Viewed by 641
Abstract
Background/Objectives: There is no approved human vaccine for Venezuelan equine encephalitis (VEE), a life-threatening disease caused by the VEE virus (VEEV). In previous studies, plasmid DNA encoding the full-length RNA genome of the VEE V4020 vaccine was used for the preparation of experimental [...] Read more.
Background/Objectives: There is no approved human vaccine for Venezuelan equine encephalitis (VEE), a life-threatening disease caused by the VEE virus (VEEV). In previous studies, plasmid DNA encoding the full-length RNA genome of the VEE V4020 vaccine was used for the preparation of experimental live virus VEE vaccines in the plasmid-transfected cell culture. Methods: Here, we used the high-fidelity polymerase chain reaction (PCR) to prepare synthetic, transcriptionally active PCR (TAP) fragments encoding the V4020 genome. Results: TAP fragment initiated the replication of the V4020 live virus vaccine in TAP fragment-transfected cells. A transfection of less than 1 ug of TAP fragment resulted in the replication of the V4020 vaccine virus in CHO cells. Conclusion: We conclude that not only plasmid DNA but also synthetic PCR-generated DNA fragments can be used for the manufacturing of live vaccines for VEEV and, potentially, other viruses. Full article
Show Figures

Figure 1

15 pages, 4287 KiB  
Article
Targeted Delivery of STING Agonist via Albumin Nanoreactor Boosts Immunotherapeutic Efficacy against Aggressive Cancers
by Zhijun Miao, Xue Song, Anan Xu, Chang Yao, Peng Li, Yanan Li, Tao Yang and Gang Shen
Pharmaceutics 2024, 16(9), 1216; https://doi.org/10.3390/pharmaceutics16091216 - 17 Sep 2024
Viewed by 726
Abstract
Background: Activating the cytosolic innate immune sensor, the cGAS-STING pathway, holds great promise for enhancing antitumor immunity, particularly in combination with immune checkpoint inhibitors (ICIs). However, the clinical application of STING agonists is often hindered by poor tumor accumulation, limited cellular uptake, and [...] Read more.
Background: Activating the cytosolic innate immune sensor, the cGAS-STING pathway, holds great promise for enhancing antitumor immunity, particularly in combination with immune checkpoint inhibitors (ICIs). However, the clinical application of STING agonists is often hindered by poor tumor accumulation, limited cellular uptake, and rapid clearance. To address these challenges, we developed a human serum albumin (HSA)-based nanoreactor system for the efficient delivery of the STING agonist SR-717, aiming to improve its antitumor efficacy. Methods: Using a biomineralization technique, we encapsulated SR-717 within HSA nanocages to form SH-NPs. These nanoparticles were characterized in terms of size, stability, and cellular uptake, and their ability to activate the STING pathway was assessed in both in vitro and in vivo models, including freshly isolated human renal tumor tissues. In vivo antitumor efficacy was evaluated in a murine renal tumor model, and immune responses were measured. Results: SH-NPs exhibited enhanced stability, efficient cellular uptake, and superior tumor accumulation compared to free SR-717. They robustly activated the STING pathway, as evidenced by increased phosphorylation of TBK1 and IRF3, along with elevated IFN-β production. Additionally, SH-NPs reshaped the immunosuppressive tumor microenvironment, promoting T-cell-mediated immunity and improving the therapeutic efficacy of checkpoint blockade in murine models. The validation in human renal tumor tissues further highlighted their potential for clinical translation. Importantly, SH-NPs were well tolerated with minimal systemic toxicity. Conclusions: This study underscores the potential of HSA-based nanoparticles for the targeted delivery of STING agonists, effectively enhancing antitumor immunity and improving cancer immunotherapy outcomes. SH-NPs offer a promising solution to the limitations of current STING agonists in clinical settings. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

21 pages, 6133 KiB  
Article
A Patent-Pending Ointment Containing Extracts of Five Different Plants Showed Antinociceptive and Anti-Inflammatory Mechanisms in Preclinical Studies
by Juan Carlos Barragan-Galvez, Maria Leonor Gonzalez-Rivera, Juan C. Jiménez-Cruz, Araceli Hernandez-Flores, Guadalupe de la Rosa, Martha L. Lopez-Moreno, Eunice Yañez-Barrientos, Michelle Romero-Hernández, Martha Alicia Deveze-Alvarez, Pedro Navarro-Santos, Claudia Acosta-Mata, Mario Alberto Isiordia-Espinoza and Angel Josabad Alonso-Castro
Pharmaceutics 2024, 16(9), 1215; https://doi.org/10.3390/pharmaceutics16091215 - 17 Sep 2024
Viewed by 718
Abstract
Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography–mass spectroscopy. [...] Read more.
Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography–mass spectroscopy. The antinociceptive activity of the ointment was assessed using the hot plate, tail flick, and formalin tests, whereas the anti-inflammatory activity was measured using the acute and chronic TPA-induced ear edema tests. Mechanisms of action were evaluated using inhibitors from signaling pathways related to pain response and by using histological analysis and assessing the expression and activity of pro-inflammatory mediators. Results: The ointment showed antinociceptive and anti-inflammatory effects like those observed with diclofenac gel (1.16% v/v) and ketoprofen gel (2.5% v/v). The antinociceptive actions of the ointment are mediated by the possible participation of the opiodergic system and the nitric oxide pathway. The anti-inflammatory response was characterized by a decrease in myeloperoxidase (MPO) activity and by a reduction in ear swelling and monocyte infiltration in the acute inflammation model. In the chronic model, the mechanism of action relied on a decrease in pro-inflammatory mediators such as COX-2, IL-1β, TNF-α, and MPO. An in-silico study with myristic acid, one of the compounds identified in the ointment’s plant mixture, corroborated the in vivo results. Conclusions: The ointment showed antinociceptive activities mediated by the decrease in COX-2 and NO levels, and anti-inflammatory activity due to the reduction in IL-1β and TNFα levels, a reduction in MPO activity, and a decrease in NF-κB and COX-2 expression. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

24 pages, 1639 KiB  
Review
Titanium Dioxide Nanomaterials: Progress in Synthesis and Application in Drug Delivery
by Fanjiao Zuo, Yameng Zhu, Tiantian Wu, Caixia Li, Yang Liu, Xiwei Wu, Jinyue Ma, Kaili Zhang, Huizi Ouyang, Xilong Qiu and Jun He
Pharmaceutics 2024, 16(9), 1214; https://doi.org/10.3390/pharmaceutics16091214 - 16 Sep 2024
Viewed by 907
Abstract
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and [...] Read more.
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and easy functionalization. TiO2 with special nanostructures can be used as delivery vehicles for drugs, genes and antigens for various therapeutic options. The exploration of TiO2-based drug delivery systems shows great promise for translating nanotechnology into clinical applications; Methods: Comprehensive data on titanium dioxide were collected from reputable online databases including PubMed, GreenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration; Results: In this review, we discuss the synthesis pathways and functionalization strategies of TiO2. Recent advances of TiO2 as a drug delivery system, including sustained and controlled drug release delivery systems were introduced. Rigorous long-term systematic toxicity assessment is an extremely critical step in application to the clinic, and toxicity is still a problem that needs to be closely monitored; Conclusions: Despite the great progress made in TiO2-based smart systems, there is still a great potential for development. Future research may focus on developing dual-reaction delivery systems and single-reaction delivery systems like redox and enzyme reactions. Undertaking thorough in vivo investigations is necessary prior to initiating human clinical trials. The high versatility of these smart drug delivery systems will drive the development of novel nanomedicines for personalized treatment and diagnosis of many diseases with poor prognosis. Full article
Show Figures

Figure 1

14 pages, 2871 KiB  
Article
Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting
by Sotiria Triantopoulou, Ioanna Roupa, Antonio Shegani, Nektarios N. Pirmettis, Georgia I. Terzoudi, Aristeidis Chiotellis, Maria Tolia, John Damilakis, Ioannis Pirmettis and Maria Paravatou-Petsota
Pharmaceutics 2024, 16(9), 1213; https://doi.org/10.3390/pharmaceutics16091213 - 16 Sep 2024
Viewed by 671
Abstract
Background/Objectives: Epidermal growth factor receptor (EGFR) plays a vital role in cell proliferation and survival, with its overexpression linked to various malignancies, including non-small cell lung cancer (NSCLC). Although EGFR tyrosine kinase inhibitors (TKIs) are a key therapeutic strategy, acquired resistance and relapse [...] Read more.
Background/Objectives: Epidermal growth factor receptor (EGFR) plays a vital role in cell proliferation and survival, with its overexpression linked to various malignancies, including non-small cell lung cancer (NSCLC). Although EGFR tyrosine kinase inhibitors (TKIs) are a key therapeutic strategy, acquired resistance and relapse remain challenges. This study aimed to synthesize and evaluate novel rhenium-based complexes incorporating EGFR TKIs to enhance anticancer efficacy, particularly in radiosensitization. Methods: We synthesized a rhenium tricarbonyl complex (Complex 2) and its 99mTc analog (Complex 2’) by incorporating triphenylphosphine instead of bromine as the monodentate ligand and PF6 as the counter-ion, resulting in a positively charged compound that forms cationic structures. Cytotoxicity and EGFR inhibition were evaluated in A431 cells overexpressing EGFR using MTT assays, Western blotting, and flow cytometry. Radiosensitization was tested through MTT and clonogenic assays. The 99mTc complex’s radiochemical yield, stability, and lipophilicity were also assessed. Results: Complex 2 exhibited significant cytotoxicity with an IC50 of 2.6 μM and EGFR phosphorylation inhibition with an IC50 of 130.6 nM. Both complex 1 and 2 induced G0/G1 cell cycle arrest, with Complex 2 causing apoptosis. Radiosensitization was observed at doses above 2 Gy. Complex 2’ demonstrated high stability and favorable lipophilicity (LogD7.4 3.2), showing 12% cellular uptake after 30 min. Conclusions: Complexes 2 and 2’ show promise as dual-function anticancer agents, offering EGFR inhibition, apoptosis induction, and radiosensitization. Their potential as radiopharmaceuticals warrants further in-depth investigation in preclinical models. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

16 pages, 656 KiB  
Review
Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review
by Munsur Ahmed, Stephen Tomlin, Catherine Tuleu and Sara Garfield
Pharmaceutics 2024, 16(9), 1212; https://doi.org/10.3390/pharmaceutics16091212 - 14 Sep 2024
Viewed by 820
Abstract
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna [...] Read more.
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna Briggs Institute (JBI) methodology, a comprehensive search strategy was implemented to identify the relevant literature across databases including PubMed, Embase, and Web of Science. Three independent reviewers conducted study selection and data extraction, focusing on studies involving paediatric patients under 18 years old and pharmaceutical dosage forms manufactured using 3D printing technology. From 2752 records screened, only six studies met the inclusion criteria, none of which specifically targeted paediatric cancer patients. These studies examined aspects of acceptability, including swallowability, taste, and feasibility of 3D-printed formulations for children. While the studies demonstrated the potential benefits of 3D printing in paediatric medication, particularly in personalised dosing, there is a notable lack of evidence addressing its acceptability in paediatric cancer patients. Further interdisciplinary collaborative research is needed in this area to fully assess preferences and acceptability among children with cancer and their parents or caregivers. Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Figure 1

11 pages, 4900 KiB  
Communication
Differential Effect of Simulated Microgravity on the Cellular Uptake of Small Molecules
by Odelia Tepper-Shimshon, Nino Tetro, Roa’a Hamed, Natalia Erenburg, Emmanuelle Merquiol, Gourab Dey, Agam Haim, Tali Dee, Noa Duvdevani, Talin Kevorkian, Galia Blum, Eylon Yavin and Sara Eyal
Pharmaceutics 2024, 16(9), 1211; https://doi.org/10.3390/pharmaceutics16091211 - 14 Sep 2024
Viewed by 631
Abstract
The space environment can affect the function of all physiological systems, including the properties of cell membranes. Our goal in this study was to explore the effect of simulated microgravity (SMG) on the cellular uptake of small molecules based on reported microgravity-induced changes [...] Read more.
The space environment can affect the function of all physiological systems, including the properties of cell membranes. Our goal in this study was to explore the effect of simulated microgravity (SMG) on the cellular uptake of small molecules based on reported microgravity-induced changes in membrane properties. SMG was applied to cultured cells using a random-positioning machine for up to three hours. We assessed the cellular accumulation of compounds representing substrates of uptake and efflux transporters, and of compounds not shown to be transported by membrane carriers. Exposure to SMG led to an increase of up to 60% (p < 0.01) in the cellular uptake of efflux transporter substrates, whereas a glucose transporter substrate showed a decrease of 20% (p < 0.05). The uptake of the cathepsin activity-based probe GB123 (MW, 1198 g/mol) was also enhanced (1.3-fold, p < 0.05). Cellular emission of molecules larger than ~3000 g/mol was reduced by up to 50% in SMG (p < 0.05). Our findings suggest that short-term exposure to SMG could differentially affect drug distribution across membranes. Longer exposure to microgravity, e.g., during spaceflight, may have distinct effects on the cellular uptake of small molecules. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Science and Technology in Israel)
Show Figures

Figure 1

14 pages, 1182 KiB  
Article
Synthesis and Evaluation of 99mTc(CO)3 Complexes with Ciprofloxacin Dithiocarbamate for Infection Imaging
by Afroditi Papasavva, Nektarios N. Pirmettis, Antonio Shegani, Eleni Papadopoulou, Christos Kiritsis, Maria Georgoutsou-Spyridonos, Dimitrios C. Mastellos, Aristeidis Chiotellis, Patricia Kyprianidou, Maria Pelecanou, Minas Papadopoulos and Ioannis Pirmettis
Pharmaceutics 2024, 16(9), 1210; https://doi.org/10.3390/pharmaceutics16091210 - 14 Sep 2024
Viewed by 533
Abstract
Background: The accurate diagnosis of bacterial infections remains a critical challenge in clinical practice. Traditional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) often fail to distinguish bacterial infections from sterile inflammation. Nuclear medicine, such as technetium-99m (99mTc) [...] Read more.
Background: The accurate diagnosis of bacterial infections remains a critical challenge in clinical practice. Traditional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) often fail to distinguish bacterial infections from sterile inflammation. Nuclear medicine, such as technetium-99m (99mTc) radiopharmaceuticals, offers a promising alternative due to its ideal characteristics. Methods: This study explores the development of [2 + 1] mixed-ligand 99mTc-labeled ciprofloxacin dithiocarbamate (Cip-DTC) complexes combined with various phosphine ligands, including triphenylphosphine (PPh3), tris(4-methoxyphenyl)phosphine (TMPP), methyl(diphenyl)phosphine (MePPh2), dimethylphenylphosphine (DMPP), and 1,3,5-triaza-7-phosphaadamantane (ADAP). The characterization of 99mTc-complexes was conducted using rhenium analogs as structural models to ensure similar coordination. Results: Stability studies demonstrated the high integrity (97–98%) of the complexes under various conditions, including cysteine and histidine challenges. Lipophilicity studies indicated that complexes with higher logD7.4 values (1.6–2.7) exhibited enhanced tissue penetration and prolonged circulation. Biodistribution studies in Swiss Albino mice with induced infections and aseptic inflammation revealed distinct patterns. Specifically, the complex fac-[99mTc(CO)3(Cip-DTC)(PPh3)] (2′) showed high infected/normal muscle ratios (4.62 at 120 min), while the complex fac-[99mTc(CO)3(Cip-DTC)(TMPP)] (3′) demonstrated delayed but effective targeting (infected/normal muscle ratio of 3.32 at 120 min). Conclusions: These findings highlight the potential of 99mTc-labeled complexes as effective radiopharmaceuticals for the differential diagnosis of bacterial infections, advancing nuclear medicine diagnostics. Future studies will focus on optimizing molecular weight, lipophilicity, and stability to further enhance the diagnostic specificity and clinical utility of these radiopharmaceuticals. Full article
Show Figures

Figure 1

13 pages, 2078 KiB  
Article
Assessment of Enzymatically Derived Blackcurrant Extract as Cosmetic Ingredient—Antioxidant Properties Determination and In Vitro Diffusion Study
by Anja Petrov Ivanković, Marija Ćorović, Ana Milivojević, Stevan Blagojević, Aleksandra Radulović, Rada Pjanović and Dejan Bezbradica
Pharmaceutics 2024, 16(9), 1209; https://doi.org/10.3390/pharmaceutics16091209 - 14 Sep 2024
Viewed by 647
Abstract
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms [...] Read more.
Blackcurrant is an anthocyanin-rich berry with proven antioxidant and photoprotective activity and emerging prebiotic potential, widely applied in cosmetic products. Hereby, highly efficient enzyme-assisted extraction of blackcurrant polyphenols was performed, giving extract with very high antioxidant activity. Obtained extract was characterized in terms of anthocyanin composition, incorporated into three different cosmetic formulations and subjected to Franz cell diffusion study. Experimental values obtained using cellulose acetate membrane for all four dominant anthocyanins (delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside and cyanidin 3-rutinoside) were successfully fitted with the Korsmeyer–Peppas diffusion model. Calculated effective diffusion coefficients were higher for hydrogel compared to oil-in-water cream gel and oil-in-water emulsion, whereas the highest value was determined for cyanidin 3-rutinoside. On the other hand, after a 72 h long experiment with transdermal skin diffusion model (Strat-M® membrane), no anthocyanins were detected in the receptor fluid, and only 0.5% of the initial quantity from the donor compartment was extracted from the membrane itself after experiment with hydrogel. Present study revealed that hydrogel is a suitable carrier system for the topical delivery of blackcurrant anthocyanins, while dermal and transdermal delivery of these molecules is very limited, which implies its applicability for treatments targeting skin surface (i.e., prebiotic, photoprotective). Full article
(This article belongs to the Special Issue Advances in Natural Products for Cutaneous Application)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop