Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Sources and Searches
2.3. Study Selection
2.4. Data Extraction and Quality Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Description of Trials
3.2. Patient Characteristics
3.3. Risk of Bias in Individual Trials and the Grade of Evidence
3.4. Outcomes of Interest
3.4.1. All-Cause Death
3.4.2. The Composite Cardiovascular Events
3.4.3. CV Death, Stroke, MI, and LDL-c Reduction
3.4.4. Estimated Glomerular Filtration Rate
3.4.5. Major Adverse Events
3.4.6. The Benefits and Harms of Other Hypolipidemic Agents and Polyunsaturated Fatty Acids Supplementation
3.4.7. Subgroup Analysis, Regressive Analysis for Baseline LDL-c, and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjunath, G.; Tighiouart, H.; Ibrahim, H.; MacLeod, B.; Salem, D.N.; Griffith, J.L.; Coresh, J.; Levey, A.S.; Sarnak, M.J. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J. Am. Coll. Cardiol. 2003, 41, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera-Gómez, F.; Chimeno, M.M.; Martín-García, D.; Lizaraso-Soto, F.; Maurtua-Briseño-Meiggs, Á.; Grande-Villoria, J.; Bustamante-Munguira, J.; Alamartine, E.; Vilardell, M.; Ochoa-Sangrador, C.; et al. Cholesterol-Lowering Treatment in Chronic Kidney Disease: Multistage Pairwise and Network Meta-Analyses. Sci. Rep. 2019, 9, 8951. [Google Scholar] [CrossRef] [Green Version]
- Wanner, C.; Tonelli, M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1046–e1081. [Google Scholar]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Brignardello-Petersen, R.; Bonner, A.; Alexander, P.E.; Siemieniuk, R.A.; Furukawa, T.A.; Rochwerg, B.; Hazlewood, G.S.; Alhazzani, W.; Mustafa, R.A.; Murad, M.H.; et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J. Clin. Epidemiol. 2018, 93, 36–44. [Google Scholar] [CrossRef]
- Puhan, M.A.; Schünemann, H.J.; Murad, M.H.; Li, T.; Brignardello-Petersen, R.; Singh, J.A.; Kessels, A.G.; Guyatt, G.H. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014, 349, g5630. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulou, A.; Higgins, J.P.T.; Papakonstantinou, T.; Chaimani, A.; Del Giovane, C.; Egger, M.; Salanti, G. CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020, 17, e1003082. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, N.; Kawada-Watanabe, E.; Koyanagi, R.; Arashi, H.; Yamaguchi, J.; Nakao, K.; Tobaru, T.; Tanaka, H.; Oka, T.; Endoh, Y.; et al. Low-density lipoprotein cholesterol targeting with pitavastatin + ezetimibe for patients with acute coronary syndrome and dyslipidaemia: The HIJ-PROPER study, a prospective, open-label, randomized trial. Eur. Heart J. 2017, 38, 2264–2276. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Collins, D.; Robins, S.; Bloomfield, H.; Curhan, G.C. Effect of gemfibrozil on change in renal function in men with moderate chronic renal insufficiency and coronary disease. Am. J. Kidney Dis. 2004, 44, 832–839. [Google Scholar] [CrossRef]
- Charytan, D.M.; Sabatine, M.S.; Pedersen, T.R.; Im, K.; Park, J.G.; Pineda, A.L.; Wasserman, S.M.; Deedwania, P.; Olsson, A.G.; Sever, P.S.; et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J. Am. Coll. Cardiol. 2019, 73, 2961–2970. [Google Scholar] [CrossRef]
- Toth, P.P.; Dwyer, J.P.; Cannon, C.P.; Colhoun, H.M.; Rader, D.J.; Upadhyay, A.; Louie, M.J.; Koren, A.; Letierce, A.; Mandel, J.; et al. Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int. 2018, 93, 1397–1408. [Google Scholar] [CrossRef] [Green Version]
- Holme, I.; Fayyad, R.; Faergeman, O.; Kastelein, J.J.; Olsson, A.G.; Tikkanen, M.J.; Larsen, M.L.; Lindahl, C.; Holdaas, H.; Pedersen, T.R. Cardiovascular outcomes and their relationships to lipoprotein components in patients with and without chronic kidney disease: Results from the IDEAL trial. J. Intern. Med. 2010, 267, 567–575. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.; Cressman, M.; Glynn, R.J. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated high-sensitivity C-reactive protein: A secondary analysis from the JUPITER (Justification for the Use of Statins in Prevention-an Intervention Trial Evaluating Rosuvastatin) trial. J. Am. Coll. Cardiol. 2010, 55, 1266–1273. [Google Scholar]
- Koren, M.J.; Davidson, M.H.; Wilson, D.J.; Fayyad, R.S.; Zuckerman, A.; Reed, D.P. Focused atorvastatin therapy in managed-care patients with coronary heart disease and CKD. Am. J. Kidney Dis. 2009, 53, 741–750. [Google Scholar] [CrossRef]
- Shepherd, J.; Kastelein, J.J.; Bittner, V.; Deedwania, P.; Breazna, A.; Dobson, S.; Wilson, D.J.; Zuckerman, A.; Wenger, N.K. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: The TNT (Treating to New Targets) study. J. Am. Coll. Cardiol. 2008, 51, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanifer, J.W.; Charytan, D.M.; White, J.; Lokhnygina, Y.; Cannon, C.P.; Roe, M.T.; Blazing, M.A. Benefit of Ezetimibe Added to Simvastatin in Reduced Kidney Function. J. Am. Soc. Nephrol. 2017, 28, 3034–3043. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Watanabe, Y.; Kumagai, H.; Shuto, H. Comparative efficacy and adverse effects of the addition of ezetimibe to statin versus statin titration in chronic kidney disease patients. Ther. Adv. Cardiovasc. Dis. 2013, 7, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Kimura, G.; Kasahara, M.; Ueshima, K.; Tanaka, S.; Yasuno, S.; Fujimoto, A.; Sato, T.; Imamoto, M.; Kosugi, S.; Nakao, K. Effects of atorvastatin on renal function in patients with dyslipidemia and chronic kidney disease: Assessment of clinical usefulness in CKD patients with atorvastatin (ASUCA) trial. Clin. Exp. Nephrol. 2017, 21, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, O.; Attman, P.O.; Knight-Gibson, C.; Kron, B.; Larsson, R.; Mulec, H.; Weiss, L.; Alaupovic, P. Effect of gemfibrozil on lipoprotein abnormalities in chronic renal insufficiency: A controlled study in human chronic renal disease. Nephron 1997, 75, 286–294. [Google Scholar] [CrossRef]
- Dogra, G.; Irish, A.; Chan, D.; Watts, G. A randomized trial of the effect of statin and fibrate therapy on arterial function in CKD. Am. J. Kidney Dis. 2007, 49, 776–785. [Google Scholar] [CrossRef]
- Nanayakkara, P.W.; van Guldener, C.; ter Wee, P.M.; Scheffer, P.G.; van Ittersum, F.J.; Twisk, J.W.; Teerlink, T.; van Dorp, W.; Stehouwer, C.D. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: Results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Arch. Intern. Med. 2007, 167, 1262–1270. [Google Scholar]
- Fellström, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.W.; Chevaile, A.; Cobbe, S.M.; Grönhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, G.; Kuji, T.; Hasegawa, K.; Ogawa, N.; Shimura, G.; Ando, D.; Umemura, S. Safety and efficacy of fluvastatin in hyperlipidemic patients with chronic renal disease. Ren. Fail. 2004, 26, 411–418. [Google Scholar] [CrossRef]
- Goicoechea, M.; de Vinuesa, S.G.; Lahera, V.; Cachofeiro, V.; Gómez-Campderá, F.; Vega, A.; Abad, S.; Luño, J. Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17 (12 Suppl. S3), S231–S235. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Ranganna, K.M.; Reddy, R.S.; Verma, M.; Gordon, N.F. Effect of rosuvastatin on C-reactive protein and renal function in patients with chronic kidney disease. Am. J. Cardiol. 2005, 96, 1290–1292. [Google Scholar] [CrossRef]
- Ting, R.D.; Keech, A.C.; Drury, P.L.; Donoghoe, M.W.; Hedley, J.; Jenkins, A.J.; Davis, T.M.; Lehto, S.; Celermajer, D.; Simes, R.J.; et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: The FIELD Study. Diabetes Care 2012, 35, 218–225. [Google Scholar] [CrossRef]
- Wanner, C.; Krane, V.; März, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef]
- Tonelli, M.; Isles, C.; Curhan, G.C.; Tonkin, A.; Pfeffer, M.A.; Shepherd, J.; Sacks, F.M.; Furberg, C.; Cobbe, S.M.; Simes, J.; et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 2004, 110, 1557–1563. [Google Scholar] [CrossRef]
- Lemos, P.A.; Serruys, P.W.; de Feyter, P.; Mercado, N.F.; Goedhart, D.; Saia, F.; Arampatzis, C.A.; Soares, P.R.; Ciccone, M.; Arquati, M.; et al. Long-term fluvastatin reduces the hazardous effect of renal impairment on four-year atherosclerotic outcomes (a LIPS substudy). Am. J. Cardiol. 2005, 95, 445–451. [Google Scholar] [CrossRef]
- Stegmayr, B.G.; Brännström, M.; Bucht, S.; Crougneau, V.; Dimeny, E.; Ekspong, A.; Eriksson, M.; Granroth, B.; Gröntoft, K.C.; Hadimeri, H.; et al. Low-dose atorvastatin in severe chronic kidney disease patients: A randomized, controlled endpoint study. Scand. J. Urol. Nephrol. 2005, 39, 489–497. [Google Scholar] [CrossRef]
- Chonchol, M.; Cook, T.; Kjekshus, J.; Pedersen, T.R.; Lindenfeld, J. Simvastatin for secondary prevention of all-cause mortality and major coronary events in patients with mild chronic renal insufficiency. Am. J. Kidney Dis. 2007, 49, 373–382. [Google Scholar] [CrossRef]
- Kendrick, J.; Shlipak, M.G.; Targher, G.; Cook, T.; Lindenfeld, J.; Chonchol, M. Effect of lovastatin on primary prevention of cardiovascular events in mild CKD and kidney function loss: A post hoc analysis of the Air Force/Texas Coronary Atherosclerosis Prevention Study. Am. J. Kidney Dis. 2010, 55, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Mizuno, K.; Ohashi, Y.; Yoshida, T.; Hirao, K.; Uchida, Y. Pravastatin and cardiovascular risk in moderate chronic kidney disease. Atherosclerosis 2009, 206, 512–517. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Betteridge, D.J.; Durrington, P.N.; Hitman, G.A.; Neil, H.A.; Livingstone, S.J.; Charlton-Menys, V.; DeMicco, D.A.; Fuller, J.H. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: An analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am. J. Kidney Dis. 2009, 54, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Fassett, R.G.; Robertson, I.K.; Ball, M.J.; Geraghty, D.P.; Coombes, J.S. Effect of atorvastatin on kidney function in chronic kidney disease: A randomised double-blind placebo-controlled trial. Atherosclerosis 2010, 213, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, J.E.; Miltersteiner, D.R.; Campos, B.M. Rosuvastatin in hemodialysis: Short-term effects on lipids and C-reactive protein. J. Nephrol. 2009, 22, 83–89. [Google Scholar]
- Tonelli, M.; Keech, A.; Shepherd, J.; Sacks, F.; Tonkin, A.; Packard, C.; Pfeffer, M.; Simes, J.; Isles, C.; Furberg, C.; et al. Effect of pravastatin in people with diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 2005, 16, 3748–3754. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Steg, P.G.; Bhatt, D.L.; Bittner, V.A.; Díaz, R.; Goodman, S.G.; Jukema, J.W.; Kim, Y.U.; Li, Q.H.; Mueller, C.; et al. Effect of alirocumab on major adverse cardiovascular events according to renal function in patients with a recent acute coronary syndrome: Prespecified analysis from the ODYSSEY OUTCOMES randomized clinical trial. Eur. Heart J. 2020, 41, 4114–4123. [Google Scholar] [CrossRef]
- Bianchi, S.; Bigazzi, R.; Caiazza, A.; Campese, V.M. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am. J. Kidney Dis. 2003, 41, 565–570. [Google Scholar] [CrossRef]
- Weinstein, D.L.; Williams, L.A.; Carlson, D.M.; Kelly, M.T.; Burns, K.M.; Setze, C.M.; Lele, A.; Stolzenbach, J.C. A randomized, double-blind study of fenofibric acid plus rosuvastatin compared with rosuvastatin alone in stage 3 chronic kidney disease. Clin. Ther. 2013, 35, 1186–1198. [Google Scholar] [CrossRef]
- Lok, C.E.; Moist, L.; Hemmelgarn, B.R.; Tonelli, M.; Vazquez, M.A.; Dorval, M.; Oliver, M.; Donnelly, S.; Allon, M.; Stanley, K. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: A randomized controlled trial. JAMA 2012, 307, 1809–1816. [Google Scholar] [CrossRef] [Green Version]
- Bowden, R.G.; Jitomir, J.; Wilson, R.L.; Gentile, M. Effects of omega-3 fatty acid supplementation on lipid levels in endstage renal disease patients. J. Ren. Nutr. 2009, 19, 259–266. [Google Scholar] [CrossRef]
- Daud, Z.A.; Tubie, B.; Adams, J.; Quainton, T.; Osia, R.; Tubie, S.; Kaur, D.; Khosla, P.; Sheyman, M. Effects of protein and omega-3 supplementation, provided during regular dialysis sessions, on nutritional and inflammatory indices in hemodialysis patients. Vasc. Health Risk. Manag. 2012, 8, 187–195. [Google Scholar]
- Khajehdehi, P. Lipid-lowering effect of polyunsaturated fatty acids in hemodialysis patients. J. Ren. Nutr. 2000, 10, 191–195. [Google Scholar] [CrossRef]
- Wanner, C.; März, W.; Varushchanka, A.; Apanasovich, N.; Dosta, N.; Yakubtsevich, R.; Locatelli, F. Dyslipidemia in chronic kidney disease: Randomized controlled trial of colestilan versus simvastatin in dialysis patients. Clin. Nephrol. 2014, 82, 163–172. [Google Scholar] [CrossRef]
- Locatelli, F.; Spasovski, G.; Dimkovic, N.; Wanner, C.; Dellanna, F.; Pontoriero, G. The effects of colestilan versus placebo and sevelamer in patients with CKD 5D and hyperphosphataemia: A 1-year prospective randomized study. Nephrol. Dial. Transplant. 2014, 29, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, F.; Dimkovic, N.; Spasovski, G. Evaluation of colestilan in chronic kidney disease dialysis patients with hyperphosphataemia and dyslipidaemia: A randomized, placebo-controlled, multiple fixed-dose trial. Nephrol. Dial. Transplant. 2013, 28, 1874–1888. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Schwartz, G.G.; Nicholls, S.J.; Buhr, K.A.; Ginsberg, H.N.; Johansson, J.O.; Kulikowski, E.; Lebioda, K.; Toth, P.P.; Wong, N.; et al. Effect of Apabetalone on Cardiovascular Events in Diabetes, CKD, and Recent Acute Coronary Syndrome: Results from the BETonMACE Randomized Controlled Trial. Clinical Journal of the American Society of Nephrology. CJASN 2021, 16, 705–716. [Google Scholar] [CrossRef]
- Palmer, S.C.; Craig, J.C.; Navaneethan, S.D.; Tonelli, M.; Pellegrini, F.; Strippoli, G.F. Benefits and harms of statin therapy for persons with chronic kidney disease: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Strippoli, G.F.; Navaneethan, S.D.; Johnson, D.W.; Perkovic, V.; Pellegrini, F.; Nicolucci, A.; Craig, J.C. Effects of statins in patients with chronic kidney disease: Meta-analysis and meta-regression of randomised controlled trials. BMJ 2008, 336, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Vogt, L.; Bangalore, S.; Fayyad, R.; Melamed, S.; Hovingh, G.K.; DeMicco, D.A.; Waters, D.D. Atorvastatin Has a Dose-Dependent Beneficial Effect on Kidney Function and Associated Cardiovascular Outcomes: Post Hoc Analysis of 6 Double-Blind Randomized Controlled Trials. J. Am. Heart Assoc. 2019, 8, e010827. [Google Scholar] [CrossRef] [Green Version]
- Deedwania, P.C.; Stone, P.H.; Fayyad, R.S.; Laskey, R.E.; Wilson, D.J. Improvement in Renal Function and Reduction in Serum Uric Acid with Intensive Statin Therapy in Older Patients: A Post Hoc Analysis of the SAGE Trial. Drugs Aging 2015, 32, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Armitage, J.; Parish, S.; Sleigh, P.; Peto, R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003, 361, 2005–2016. [Google Scholar]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Albertus, P.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Cao, J.; Chen, J.L.; et al. US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2017, 69 (3 Suppl. S1), A7–A8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methven, S.; Steenkamp, R.; Fraser, S. UK Renal Registry 19th Annual Report: Chapter 5 Survival and Causes of Death in UK Adult Patients on Renal Replacement Therapy in 2015: National and Centre-specific Analyses. Nephron 2017, 137 (Suppl. S1), 117–150. [Google Scholar] [CrossRef] [PubMed]
- März, W.; Genser, B.; Drechsler, C.; Krane, V.; Grammer, T.B.; Ritz, E.; Stojakovic, T.; Scharnagl, H.; Winkler, K.; Holme, I.; et al. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on hemodialysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 1316–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, W.G.; Emberson, J.; Mihaylova, B.; Blackwell, L.; Reith, C.; Solbu, M.D.; Mark, P.B.; Fellström, B.; Jardine, A.G.; Wanner, C.; et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: A meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016, 4, 829–839. [Google Scholar] [PubMed] [Green Version]
- Konarzewski, M.; Szolkiewicz, M.; Sucajtys-Szulc, E.; Blaszak, J.; Lizakowski, S.; Swierczynski, J.; Rutkowski, B. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am. J. Nephrol. 2014, 40, 157–163. [Google Scholar] [CrossRef]
- Annemans, L.; Packard, C.J.; Briggs, A.; Ray, K.K. ‘Highest risk-highest benefit’ strategy: A pragmatic, cost-effective approach to targeting use of PCSK9 inhibitor therapies. Eur. Heart J. 2018, 39, 2546–2550. [Google Scholar] [CrossRef]
- Tonelli, M.; Collins, D.; Robins, S.; Bloomfield, H.; Curhan, G.C. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney Int. 2004, 66, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- Pradhan, A.D.; Paynter, N.P.; Everett, B.M.; Glynn, R.J.; Amarenco, P.; Elam, M.; Ginsberg, H.; Hiatt, W.R.; Ishibashi, S.; Koenig, W.; et al. Rationale and design of the Pemafibrate to Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes (PROMINENT) study. Am. Heart J. 2018, 206, 80–93. [Google Scholar] [CrossRef]
- Zewinger, S.; Kleber, M.E.; Rohrer, L.; Lehmann, M.; Triem, S.; Jennings, R.T.; Petrakis, I.; Dressel, A.; Lepper, P.M.; Scharnagl, H.; et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur. Heart J. 2017, 38, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Cueto-Manzano, A.M.; Angel-Zúñiga, J.R.; Ornelas-Carrillo, G.; Rojas-Campos, E.; Martínez-Ramírez, H.R.; Cortés-Sanabria, L. Anti-inflammatory interventions in end-stage kidney disease: A randomized, double-blinded, controlled and crossover clinical trial on the use of pravastatin in continuous ambulatory peritoneal dialysis. Arch. Med. Res. 2013, 44, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Ren, C.; Hu, Q. Effect of statins on the treatment of early diabetic nephropathy: A systematic review and meta-analysis of nine randomized controlled trials. Ann. Palliat. Med. 2021, 10, 11548–11557. [Google Scholar] [CrossRef] [PubMed]
- Panichi, V.; Paoletti, S.; Mantuano, E.; Manca-Rizza, G.; Filippi, C.; Santi, S.; Taccola, D.; Donadio, C.; Tramonti, G.; Innocenti, M.; et al. In vivo and in vitro effects of simvastatin on inflammatory markers in pre-dialysis patients. Nephrol. Dial. Transplant. 2006, 21, 337–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 2012, 18, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Seidah, N.G.; Garçon, D. Expanding Biology of PCSK9: Roles in Atherosclerosis and Beyond. Curr. Atheroscler. Rep. 2022, 24, 821–830. [Google Scholar] [CrossRef]
- Vidt, D.G. Statins and proteinuria. Curr. Atheroscler. Rep. 2005, 7, 351–357. [Google Scholar] [CrossRef]
Study | Sample Size | Follow-Up (Month) | CKD Definition | I | C | Age (Years) | Male (%) | Smoker (%) | ASCVD (%) | Diabetes (%) | Re. (%) | Dialysis (%) | LDL-c (mmol/L) | HDL-C (mmol/L) | TG (mmol/L) | SCr (umol/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Charytan 2019 [16] (FOURIER trial) | 4443 | 30.0 | eGFR20–59 mL/min/ 1.73 m2 | PS | HS | 68.7 (7.8) | 65.0 | 15.8 | 100: MI 77.0; Stroke 25.0; PAS 17.4 | 46.4 | NA | 0 | 2.4 [2.1–2.7] | 1.1 [0.9–1.4] | 1.6 [1.2–2.2] * | 114.9 [106.1–132.6] |
Toth 2018 [17] | 467 | 6–26.0 | eGFR 30–59 mL/min/ 1.73 m2 | PS | HS | 67.3 (9.4) | 57.0 | 57.9 | NA | 48.2 | NA | 0.0 | 2.8 (0.9) | 1.3 (0.3) | 1.5 (0.8) | 115.5 (NA) |
Hagiwara 2017 (HIJ-PROPER trial) [14] | 424 | 46.0 | eGFR < 60 mL/min/1.73 m2 | ES | LS | 65.6 (11.8) | 75.6 | 34.5 | 100.0 | 30.2 | NA | NA | 3.5 (0.8) | NA | NA | NA |
Baigent 2011 (UK-SHARP-I trial) [23] | 9270 | 59.0 | More than once previous measurement of serum or plasma creatinine of ≥150 μmol/L in men or 130 μmol/L in women. | ES | C | 62.0 (12.0) | 62.5 | 13.0 | No history of MI or Re. Prior vascular disease: 15.0 | 23.0 | 0 | 32.6 | 2.8 (0.9) | 1.1 (0.3) | 2.3 (1.7) | At least 150.0 |
Stanifer 2017 (IMPROVE-IT trial) [22] | 3761 | 84.0 | eGFR < 60 mL/min/1.73 m2 | ES | LS | 70.8 (9.3) | 39.5 | 19.9 | MI 27.6 | 33.8 | PCI 12.1; CABG 15.1 | 0 | 2.3 (0.5) | 1.1 (0.4) | 1.5 (0.8) | 123.8 (26.5) |
Tonelli 2004 (VA-HIT trial) [35] | 399 | 61 | eGFR < 67.5 mL/min/1.73 m2 | F | C | 67.3 (5.2) | 100.0 | NA | 100.0 | 30.3 | NA | NA | 2.9 (0.6) | 0.8 (0.1) | 1.9 (0.8) * | Less than 176.0 |
TING 2012 [34] | 519 | 60 | eGFR 30–59 mL/min/ 1.73 m2 | F | C | 66.5 (5.9) | 41.2 | 6.9 | 39.7 | 100.0 | NA | 0.0 | 3.1 (NA) | 1.1 [1.0–1.1] | 1.9 [1.9–2.0] * | NA |
Shepherd 2007 (TNT trial) [21] | 3107 | 60 | eGFR < 60 mL/min/1.73 m2 | HS | LS | 65.5 (7.0) | 67.7 | 9.0 | 100.0 | 17.5 | >50.0 | NA | 2.5 (0.5) | 1.2 (0.3) | 1.8 (0.8) | NA |
Koren 2008 (ALLIANCE trial) [20] | 579 | 54.3 | eGFR < 60 mL/min/1.73 m2 | HS | LS | 65.2 (7.2) | 76.7 | 15.0 | 100.0 | 27.9 | >50.0 | NA | 3.8 (0.7) | 1.0 (0.3) | 2.3 (1.1) | 136.2 (44.2) |
Holme 2009 (IDEAL trial) [18] | 2321 | 58.0 | eGFR < 60 mL/min/1.73 m2 | HS | LS | 67.0 (7.9) | NA | 15.3 | 100.0 | 14.4 | 38.3 | NA | 3.2 (1.0) | 1.2 (0.3) | 1.7 (0.9) | NA |
Ridker 2010 (JUPITER trial) [19] | 3267 | 22.8 | eGFR < 60 mL/min/1.73 m2 | HS | C | 70.0 [65.0–75.0] | 34.8 | 8.1 | 0.0 | NA | 0.0 | NA | 2.8 [2.5–3.1] | 1.3 [1.0–1.6] | 1.5 [1.1–2.1] * | NA |
Wanner 2005 (4D trial) [34] | 1255 | 48.0 | Undergoing hemodialysis | LS | C | 65.7 (8.3) | 54.0 | 8.6 | CAD:29.4; PAD 44.6 | 100 | 13.0 | 100 | 3.3 (0.8) | 0.9 (0.4) | 3.1 (1.9) | NA |
Tonelli 2004 (3p: WOSCOPS, CARE, LIPID) [44] | 4491 | 60.0 | CG-GFR 30–59 mL/min/ 1.73 m2 | LS | C | 65.7 (5.6) | 81.7 | 10.3 | Previous stroke5.3; known CAD73.7; MI67.6; UA21.2 | 9.9 | NA | 0.0 | 3.9 (0.7) | 1.0 (0.2) | 1.8 (0.8) | 115.0 (17.7) |
Lemos 2005 (LIPS trial) [36] | 310 | 45.6 | Mild Renal Impairment: abnormal creatinine clearance was defined as a value in the lowest quintile (<55.9 mL/min) | LS | C | 69.0 (7.0) | 67.0 | 17.0 | 100: patients who underwent successful elective PCI were included | 12.0 | 100.0 | 0.0 | 3.4 (0.8) | 1.0 (0.3) | 1.7 (0.8) * | 117.6 (247.5) |
STEGMAYR/ HOLMBERG 2005 [37] | 143 | 31.0 | Creatinine clearance < 30 mL/min | LS | C | 68.6 (11.3) | 69.3 | 61.0 | Angina25.9, MI24.5, stroke or TIA 12.6 | 26.8 | 7.7 | 76.9 | 3.5 (1.2) | 1.2 (0.5) | 2.6 (1.7) | NA |
Chonchol 2006 (4S trial) [38] | 505 | 65.5 | CG-GFR 30–59 mL/min/ 1.73 m2 | LS | C | 60.4 (6.2) | 73.3 | 20.3 | 100.0 | 4.1 | 7.7 | NA | 4.9 (0.7) | 1.2 (0.3) | 1.5 (0.5) * | NA |
Kendrick 2009 (AFCAPS/ TexCAPS trial) [39] | 304 | 63.6 | eGFR < 60 mL/min/1.73 m2 | LS | C | 62.0 (7.5) | 78.3 | 7.9 | 0.0 | 1.5 | 0.0 | 0.0 | 3.9 (0.6) | 1.0 (0.2) | 2.0 (0.9) * | 123.8 (26.5) |
Nakamura 2009 (MEGA trial) [40] | 2978 | 63.6 | 30 < eGFR < 60 mL/min/1.73 m2 | LS | C | 58.0 (7.2) | 24.3 | 12.5 | 0.0 | NA | 0.0 | 0.0 | 4.0 (0.4) | 1.5 (0.4) | 1.5 [1.1–2.1] | NA |
Colhoun 2009 (CARDS trial) [41] | 970 | 46.8 | 30 < eGFR < 60 mL/min/1.73 m2 | LS | C | 65.0 (6.7) | 47.9 | NA: as on the criteria of inclusion | 0.0 | 100.0 | 0.0 | 0.0 | 3.1 (0.7) | 1.5 (0.2) | NA | 113.2 (NA) |
Fassett 2009 [42] | 123 | 30.0 | serum creatinine levels >120 mmol/L | LS | C | 60.2 (15.1) | 65.2 | NA | NA | 8.5 | NA | 0.0 | 3.4 (1.1) | 1.2 (0.4) | 2.3 (1.5) * | 226.1 (118.2) |
Tuñón 2020 (ODYSSEY OUTCOMES trial) [45] | 2122 | 36.0 | eGFR20–59 mL/min/ 1.73 m2 (CKD-EPI) | PS | HS | 67.1 (8.9) | 59.2 | 11.8 | MI 26.2; stroke 16.3; PAD 8.5 | 41.4 | 34.5 | 0.0 | 2.3 [1.9–2.8] | 1.1 [0.9–1.3] | 1.6 [1.2–2.2] | NA |
Suzuki 2014 [24] | 286 | 12.0 | eGFR < 60 mL/min/1.73 m2 (MDRD) | ES | LS | 64.0 (12.0) | 66.0 | 40.2 | Cerebrovascular 6.9; cardiovascular 2.8; PAD 4.2 | 34.5 | NA | 0.0 | 3.3 (0.2) | 1.5 (0.2) | NA | NA |
Kimura 2017 (ASUCA trial) [25] | 334 | 24.0 | 1)With positive proteinuria and eGFR >60 (ml/min/1.73 m2); 2)30 < eGFR <60 mL/min/1.73 m2 (MDRD) | LS | Non-statin treatment | 63.2 (8.1) | 63.8 | 14.1 | Cerebrovascular accident 5.7; MI:0.6; angina pectoris1.2 | 33.8 | NA | 0.0 | 3.7 (0.7) | 1.3 (0.3) | 2.0 (1.4) | NA |
Dogra 2007 [27] | 90 | 1.5 | eGFR < 60 mL/min/1.73 m2 (Cockcroft-Gault formula) | Tow arms: F and LS | Placebo | 61.9 (12.9) | 62.2 | 0.2 | 0.2 | 21.1 | NA | 41.1 | 3.3 (1.1) | 1.2 (NA) | 1.8 (NA) | NA |
Nanayakkara 2007 (ATIC trial) [28] | 93 | Maximum 24.0 | Creatinine clearance of 15 to 70 mL/min per 1.73 m2 (MDRD) | LS | C | 53.0 (12.0) | 56.9 | 35.5 | 0.0 | 0.0 | 0.0 | NA | 3.6 (0.9) | 1.2 (0.4) | 1.8 (1.0) * | 205.1 (83.9) |
Yasuda 2004 [30] | 80 | Maximum 12.0 | Scr < 440 mmol/L or creatinine clearance was 20–70 mL/min/1.73 m2 (urinary creatinine concentration × urine volume)/(SCr concentration). | LS + diet | Diet | 57.5 (2.0) | 46.3 | NA | NA | 42.5 | NA | 0.0 | 4.4 (0.1) | 1.3 (0.1) | 2.5 (0.2) * | 168.0 (17.7) |
Goicoechea 2006 [31] | 63 | 6.0 | CKD stages 2, 3, and 4: eGFR< 90 and >15 mL/min./1.73 m2 (Cockroft-Gault formula.) | LS | C | 67.3 (13.8) | 63.5 | NA | PAD: 11.1; Cerebrovascular disease: 3.2; CAD 3.2 | 17.5 | 0.0 | 0.0 | 3.7 (0.6) | 1.5 (0.4) | 1.6 (0.7) * | NA |
Verma 2005 [32] | 91 | 5.0 | eGFR < 60 mL/min/1.73 m2 (MDRD) | LS | C | 73.5 (14.9) | 35.2 | 19.0 | NA | 46.5 | NA | 0.0 | 3.4 (1.0) | 1.3 (0.4) | 1.9 (1.6) * | 141.4 (88.4) |
Burmeister 2009 [43] | 59 | 3.0 | Hemodialysis | LS | C | 57.1 (15.4) | 62.7 | NA | Acute MI was excluded | 33.9 | NA | 100.0 | 2.4 (1.0) | 1.0 (0.3) | 1.9 (0.9) * | NA |
Fellström 2009 (AURORA trial) [29] | 2773 | 45.6 | undergoing hemodialysis | LS | C | 64.2 (8.6) | 62.0 | 15.5 | CVD39.9, Peripheral vascular disease 15.3 | 19.3 | 6.3 | 100.0 | 2.6 (0.9) | 1.2 (0.4) | 1.8 (1.1) | NA |
Summary | 45,627 | 51.8 | / | / | / | 65.4 (10.7) | 58.0 | 14.0 | / | 30.9 | / | 20.8 | 3.0 | 1.2 | 1.9 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, G.; Wang, X.; Li, Y.; Chen, X.; Huang, K.; Bai, L.; Ye, Y.; Peng, Y. Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis. Pharmaceutics 2023, 15, 6. https://doi.org/10.3390/pharmaceutics15010006
Liao G, Wang X, Li Y, Chen X, Huang K, Bai L, Ye Y, Peng Y. Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis. Pharmaceutics. 2023; 15(1):6. https://doi.org/10.3390/pharmaceutics15010006
Chicago/Turabian StyleLiao, Guangzhi, Xiangpeng Wang, Yiming Li, Xuefeng Chen, Ke Huang, Lin Bai, Yuyang Ye, and Yong Peng. 2023. "Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis" Pharmaceutics 15, no. 1: 6. https://doi.org/10.3390/pharmaceutics15010006
APA StyleLiao, G., Wang, X., Li, Y., Chen, X., Huang, K., Bai, L., Ye, Y., & Peng, Y. (2023). Antidyslipidemia Pharmacotherapy in Chronic Kidney Disease: A Systematic Review and Bayesian Network Meta-Analysis. Pharmaceutics, 15(1), 6. https://doi.org/10.3390/pharmaceutics15010006