Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Stock Solutions
2.3. Cell Line
2.4. Cytotoxicity and Proliferation Assays
2.5. Reporter Gene Assays
2.6. Impact of IFN-α 2a on the Expression of Drug Disposition Genes
2.7. Quantification of mRNA Expression by Real-Time RT-PCR
2.8. Impact of IFN-α 2a on CYP3A4 Metabolic Activity
2.9. Statistical Analysis
3. Results
3.1. Impact of IFN-α 2a on NF-ĸB or PXR Activities over Time
3.2. Impact of IFN-α 2a on mRNA Expression of Selected Drug Disposition Genes
3.3. Impact of IFN-α 2a on CYP3A4 Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff, R.M.; Foster, G.R.; Stark, G.R. Interferons at Age 50: Past, Current and Future Impact on Biomedicine. Nat. Rev. Drug Discov. 2007, 6, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Borden, E.C. Interferons α and β in Cancer: Therapeutic Opportunities from New Insights. Nat. Rev. Drug Discov. 2019, 18, 219–234. [Google Scholar] [CrossRef]
- Medrano, R.F.V.; Hunger, A.; Mendonça, S.A.; Barbuto, J.A.M.; Strauss, B.E. Immunomodulatory and Antitumor Effects of Type I Interferons and Their Application in Cancer Therapy. Oncotarget 2017, 8, 71249–71284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.L.; Grossberg, S.E. The Effects of Interferon-α on the Production and Action of Other Cytokines. Semin. Oncol. 1998, 25, 23–29. [Google Scholar]
- Borden, E.C.; Parkinson, D. A Perspective on the Clinical Effectiveness and Tolerance of Interferon-α. Semin. Oncol. 1998, 25, 3–8. [Google Scholar]
- Morgan, E.T. Impact of Infectious and Inflammatory Disease on Cytochrome P450-Mediated Drug Metabolism and Pharmacokinetics. Clin. Pharmacol. Ther. 2009, 85, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Hermann, M. Immunological Response as a Source to Variability in Drug Metabolism and Transport. Front. Pharmacol. 2012, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-I.; Zhang, L.; Men, A.Y.; Kenna, L.A.; Huang, S.-M. CYP-Mediated Therapeutic Protein-Drug Interactions: Clinical Findings, Proposed Mechanisms and Regulatory Implications. Clin. Pharmacokinet. 2010, 49, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Green, M.D. Drug Interaction Studies of Therapeutic Proteins or Monoclonal Antibodies. J. Clin. Pharmacol. 2007, 47, 1540–1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, Y.-H.; Yang, Z.; Rodrigues, A.D. Effect of Interferon-A2b on the Expression of Various Drug-Metabolizing Enzymes and Transporters in Co-Cultures of Freshly Prepared Human Primary Hepatocytes. Xenobiotica 2011, 41, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.J.; Xu, Z.-X.; Grippo, J.F. Effect of Peginterferon Alfa-2a (40KD) on Cytochrome P450 Isoenzyme Activity. Br. J. Clin. Pharmacol. 2013, 75, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.J.; Baird-Lambert, J.A.; Farrell, G.C. Inhibition of Theophylline Metabolism by Interferon. Lancet 1987, 330, 939–941. [Google Scholar] [CrossRef]
- Israel, B.C.; Blouin, R.A.; McIntyre, W.; Shedlofsky, S. Effects of Interferon-α Monotherapy on Hepatic Drug Metabolism in Cancer Patients. Br. J. Clin. Pharmacol. 1993, 36, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, P.I.; Tapner, M.; Farrell, G.C. Interferon Suppresses Erythromycin Metabolism in Rats and Human Subjects. Hepatology 1993, 17, 230–235. [Google Scholar] [CrossRef]
- Williams, S.J.; Farrell, G.C. Inhibition of Antipyrine Metabolism by Interferon. Br. J. Clin. Pharmacol. 1986, 22, 610–612. [Google Scholar] [CrossRef] [Green Version]
- Pageaux, G.P.; le Bricquir, Y.; Berthou, F.; Bressot, N.; Picot, M.C.; Blanc, F.; Michel, H.; Larrey, D. Effect of Interferon-α on Cytochrome P-450 Isoforms 1A2 and 3A Activites in Patients with Chronic Hepatitis C. Eur. J. Gastroenterol. Hepatol. 1998, 10, 491–495. [Google Scholar] [CrossRef]
- Becquemont, L.; Chazouilleres, O.; Serfaty, L.; Poirier, J.M.; Broly, F.; Jaillon, P.; Poupon, R.; Funck-Brentano, C. Effect of Interferon α-Ribavirin Bitherapy on Cytochrome P450 1A2 and 2D6 and N-Acetyltransferase-2 Activities in Patients with Chronic Active Hepatitis C. Clin. Pharmacol. Ther. 2002, 71, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Tolson, A.H.; Wang, H. Regulation of Drug-Metabolizing Enzymes by Xenobiotic Receptors: PXR and CAR. Adv. Drug Deliv. Rev. 2010, 62, 1238–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Ke, S.; Liu, D.; Sheng, T.; Thomas, P.E.; Rabson, A.B.; Gallo, M.A.; Xie, W.; Tian, Y. Role of NF-κB in Regulation of PXR-Mediated Gene Expression: A Mechanism for the Suppression of Cytochrome P-450 3A4 by Proinflammatory Agents. J. Biol. Chem. 2006, 281, 17882–17889. [Google Scholar] [CrossRef] [Green Version]
- Sato, I.; Shimbo, T.; Kawasaki, Y.; Masaki, N. Comparison of Peginterferon Alfa-2a and Alfa-2b for Treatment of Patients with Chronic Hepatitis C: A Retrospective Study Using the Japanese Interferon Database. Drug Des. Devel. Ther. 2014, 9, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Craxì, A. PEG IFN Alfa-2a vs. Alfa-2b: And the Winner Is...? J. Hepatol. 2010, 52, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Czerwiński, M.; Gilligan, K.; Westland, K.; Ogilvie, B.W. Effects of Monocyte Chemoattractant Protein-1, Macrophage Inflammatory Protein-1α, and Interferon-A2a on P450 Enzymes in Human Hepatocytes in vitro. Pharmacol. Res. Perspect. 2019, 7, e00551. [Google Scholar] [CrossRef] [PubMed]
- Flaman, A.S.; Gravel, C.; Hashem, A.M.; Tocchi, M.; Li, X. The Effect of Interferon-α on the Expression of Cytochrome P450 3A4 in Human Hepatoma Cells. Toxicol. Appl. Pharmacol. 2011, 253, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, S.; Koster, A.S.; Beijnen, J.H.; Schellens, J.H.M.; Meijerman, I. Comparison of Two Immortalized Human Cell Lines to Study Nuclear Receptor-Mediated CYP3A4 Induction. Drug Metab. Dispos. 2008, 36, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Mugundu, G.M.; Desai, P.B.; Thummel, K.E.; Unadkat, J.D. Intestinal Human Colon Adenocarcinoma Cell Line LS180 Is an Excellent Model to Study Pregnane X Receptor, but Not Constitutive Androstane Receptor, Mediated CYP3A4 and Multidrug Resistance Transporter 1 Induction: Studies with Anti-Human Immunodeficiency virus protease inhibitors. Drug Metab. Dispos. 2008, 36, 1172–1180. [Google Scholar] [CrossRef]
- Brandin, H.; Viitanen, E.; Myrberg, O.; Arvidsson, A.-K. Effects of Herbal Medicinal Products and Food Supplements on Induction of CYP1A2, CYP3A4 and MDR1 in the Human Colon Carcinoma Cell Line LS180. Phytother. Res. 2007, 21, 239–244. [Google Scholar] [CrossRef]
- Yamasaki, D.; Nakamura, T.; Okamura, N.; Kokudai, M.; Inui, N.; Takeuchi, K.; Watanabe, H.; Hirai, M.; Okumura, K.; Sakaeda, T. Effects of Acid and Lactone Forms of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors on the Induction of MDR1 Expression and Function in LS180 Cells. Eur. J. Pharm. Sci. 2009, 37, 126–132. [Google Scholar] [CrossRef]
- Peters, T.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Interaction of the Mitotic Kinesin Eg5 Inhibitor Monastrol with P-Glycoprotein. Naunyn Schmiedebergs Arch. Pharmacol. 2006, 372, 291–299. [Google Scholar] [CrossRef]
- Rigalli, J.P.; Reuter, T.; Herold-Mende, C.; Dyckhoff, G.; Haefeli, W.E.; Weiss, J.; Theile, D. Minor Role of Pregnane-x-Receptor for Acquired Multidrug Resistance in Head and Neck Squamous Cell Carcinoma in vitro. Cancer Chemother. Pharmacol. 2013, 71, 1335–1343. [Google Scholar] [CrossRef]
- García-Piñeres, A.J.; Lindenmeyer, M.T.; Merfort, I. Role of Cysteine Residues of P65/NF-κB on the Inhibition by the Sesquiterpene Lactone Parthenolide and N-Ethyl Maleimide, and on Its Transactivating Potential. Life Sci. 2004, 75, 841–856. [Google Scholar] [CrossRef]
- Kwok, B.H.B.; Koh, B.; Ndubuisi, M.I.; Elofsson, M.; Crews, C.M. The Anti-Inflammatory Natural Product Parthenolide from the Medicinal Herb Feverfew Directly Binds to and Inhibits IκB Kinase. Chem. Biol. 2001, 8, 759–766. [Google Scholar] [CrossRef] [Green Version]
- Albermann, N.; Schmitz-Winnenthal, F.H.; Z’graggen, K.; Volk, C.; Hoffmann, M.M.; Haefeli, W.E.; Weiss, J. Expression of the Drug Transporters MDR1/ABCB1, and PXR in Peripheral Blood Mononuclear Cells and Their Relationship with the Expression in Intestine and Liver. Biochem. Pharmacol. 2005, 70, 949–958. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Theile, D.; Haefeli, W.E. Rifampicin Alters the Expression of Reference Genes Used to Normalize Real-Time Quantitative RT-PCR Data. Naunyn Schmiedebergs Arch. Pharmacol. 2012, 385, 1025–1034. [Google Scholar] [CrossRef]
- Theile, D.; Wagner, L.; Haefeli, W.E.; Weiss, J. In vitro Evidence Suggesting That the Toll-like Receptor 7 and 8 Agonist Resiquimod (R-848) Unlikely Affects Drug Levels of Co-Administered Compounds. Eur. J. Pharm. Sci. 2021, 162, 105826. [Google Scholar] [CrossRef]
- Zhang, Z.-B.; Wang, Q.-Y.; Ke, Y.-X.; Liu, S.-Y.; Ju, J.-Q.; Lim, W.A.; Tang, C.; Wei, P. Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit. Cell Syst. 2017, 5, 460–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, K.L.; Fruin, A.B.; Gower, A.C.; Gonzales, K.D.; Stucchi, A.F.; Andry, C.D.; Brien, M.O.; Becker, J.M. NF-ΚB Activation Precedes Increases in MRNA Encoding Neurokinin-1 Receptor, Proinflammatory Cytokines, and Adhesion Molecules in Dextran Sulfate Sodium–Induced Colitis in Rats. Dig. Dis. Sci. 2005, 50, 2366–2378. [Google Scholar] [CrossRef]
- Vosters, O.; Beuneu, C.; Movahedi, N.N.B.; Pipeleers, E.A.I.S.D.; Goldman, M.; Verhasselt, V. CD40 Expression on Human Pancreatic Duct Cells: Role in Nuclear Factor-Kappa B Activation and Production of pro-Inflammatory Cytokines. Diabetologia 2004, 47, 660–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajraktari, G.; Weiss, J. The Aglycone Diosmetin Has the Higher Perpetrator Drug-Drug Interaction Potential Compared to the Parent Flavone Diosmin. J. Funct. Foods 2020, 67, 103842. [Google Scholar] [CrossRef]
- Pavek, P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front. Pharmacol. 2016, 7, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Gade, P.; Xiao, W.; Kalvakolanu, D.V. The Interferon Signaling Network and Transcription Factor C/EBP-β. Cell. Mol. Immunol. 2007, 4, 407–418. [Google Scholar] [PubMed]
- Roy, S.K.; Wachira, S.J.; Weihua, X.; Hu, J.; Kalvakolanu, D.V. CCAAT/Enhancer-Binding Protein-β Regulates Interferon-Induced Transcription through a Novel Element. J. Biol. Chem. 2000, 275, 12626–12632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Jiménez, C.P.; Jover, R.; Donato, M.T.; Castell, J.; Gómez-Lechón, M.J. Transcriptional Regulation and Expression of CYP3A4 in Hepatocytes. Curr. Drug Metab. 2007, 8, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Jover, R.; Bort, R.; Gómez-Lechón, J.; Castell, J.V. Down-Regulation of Human CYP3A4 by the Inflammatory Signal Interleukin 6: Molecular Mechanism and Transcription Factors Involved. FASEB J. 2002, 16, 1799–1801. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, C.P.; Gómez-Lechón, M.J.; Castell, J.V.; Jover, R. Transcriptional Regulation of the Human Hepatic CYP3A4: Identification of a New Distal Enhancer Region Responsive to CCAAT/Enhancer-Binding Protein β Isoforms (Liver Activating Protein and Liver Inhibitory Protein). Mol. Pharmacol. 2005, 67, 2088–2101. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Theile, D.; Spalwisz, A.; Burhenne, J.; Riedel, K.-D.; Haefeli, W.E. Influence of Sildenafil and Tadalafil on the Enzyme- and Transporter-Inducing Effects of Bosentan and Ambrisentan in LS180 Cells. Biochem. Pharmacol. 2013, 85, 265–273. [Google Scholar] [CrossRef]
Exposure Time | NF-ĸB Activity | PXR Activity | ||
---|---|---|---|---|
IFN-α 2a 1000 U/mL | IFN-α 2a 5000 U/mL | IFN-α 2a 1000 U/mL | IFN-α 2a 5000 U/mL | |
2 h | <0.0001 | <0.0001 | 0.546 | 0.666 |
6 h | 0.0078 | 0.002 | <0.0001 | <0.0001 |
24 h | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
30 h | 0.010 | 0.0003 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theile, D.; Wagner, L.; Bay, C.; Haefeli, W.E.; Weiss, J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics 2021, 13, 808. https://doi.org/10.3390/pharmaceutics13060808
Theile D, Wagner L, Bay C, Haefeli WE, Weiss J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics. 2021; 13(6):808. https://doi.org/10.3390/pharmaceutics13060808
Chicago/Turabian StyleTheile, Dirk, Lelia Wagner, Cindy Bay, Walter Emil Haefeli, and Johanna Weiss. 2021. "Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes" Pharmaceutics 13, no. 6: 808. https://doi.org/10.3390/pharmaceutics13060808
APA StyleTheile, D., Wagner, L., Bay, C., Haefeli, W. E., & Weiss, J. (2021). Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics, 13(6), 808. https://doi.org/10.3390/pharmaceutics13060808