Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Co-Processed Chitosan-Kaolin (CCK) Using the Spray Drying Technique
2.2.1. CCK Preparation
2.2.2. Selection of an Optimum Feed Formulation
2.3. Co-Processed Chitosan-Kaolin (CCK) Characterization
2.3.1. Flow Properties
2.3.2. Loss on Drying
2.3.3. Tablet Hardness
2.3.4. Scanning Electron Microscopy (SEM)
2.3.5. Powder X-ray Diffraction
2.3.6. Powder Characteristics
2.4. Evaluation of Co-Processed Excipient Properties
2.4.1. Compression Behavior
Tablet Preparation
Tablet Tensile Strength
2.4.2. Disintegration Property
2.5. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Co-Processed Chitosan-Kaolin (CCK) Using the Spray Drying Technique
3.1.1. Effect of the Chitosan/Kaolin Ratio and the Chitosan/TPP Ratio on Flow Properties
3.1.2. Effect of the Chitosan/Kaolin Ratio and the Chitosan/TPP Ratio on Tablet Hardness
3.2. Co-Processed Chitosan–Kaolin (CCK) Characterization
3.2.1. Morphology and Particle Size
3.2.2. Powder X-ray Diffractometry
3.3. Powder Characterization and Compaction of Co-Processed Excipients
3.3.1. Powder Flow Properties
3.3.2. Pressure-Hardness Profile Determination
3.3.3. Tablet Tensile Strength
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
CCK | Co-processed chitosan-kaolin |
CI | Compressibility index |
DC | Direct compression |
STPP | Sodium tripolyphosphate |
References
- Davies, P. Pharmaceutical Preformulation and Formulation. In Oral Solid Dosage Forms, 2nd ed.; Gison, M., Ed.; Informa Healthcare: New York, NY, USA, 2009; pp. 367–394. [Google Scholar]
- Mîinea, L.A.; Mehta, R.; Kallam, M.; Farina, J.A.; Deorkar, N. Evaluation and Characteristic of New Direct Compression Performance Excipient: Pharm. Technol. 2011. Available online: https://www.pharmtech.com/view/evaluation-and-characteristics-new-direct-compression-performance-excipient (accessed on 20 August 2021).
- Williams, D.R. Particle Engineering in Pharmaceutical Solids Processing: Surface Energy Considerations. Curr. Pharm. Des. 2015, 21, 2677–2694. [Google Scholar] [CrossRef] [Green Version]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Nachaegari, S.K.; Bansal, A.K. Improved excipient functionality by coprocessing. In Excipient Development for Pharmaceutical, Biotechnology and Drug Delivery Systems; Katdare, A., Chaubal, M.V., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 109–125. [Google Scholar]
- Chougule, A.S.; Dikpati, A.; Trimbake, T. Formulation development techniques of co-processed excipients. J. Adv. Pharm. Sci. 2012, 2, 231–249. [Google Scholar]
- Marwaha, M.; Sandhu, D.; Marwaha, R.K. Coprocessing of excipients: A review on excipient development for improved tableting performance. Int. J. Appl. Pharm. 2010, 2, 41–47. [Google Scholar]
- Rojas, J.; Buckner, I.; Kumar, V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev. Ind. Pharm. 2012, 38, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J. Excipient design by co-processing for direct compression applications. In Excipient Applications in Formulation Design and Drug Delivery; Narang, A.S., Boddu, S.H.S., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 589–608. [Google Scholar]
- Garg, N.; Pandey, P.; Kaushik, D.; Dureja, H. Development of novel multifunction directly compressible co-processed excipient by melt granulation technique. Int. J. Pharm. Investig. 2015, 5, 266–274. [Google Scholar]
- El-Barghouthi, M.; Eftaiha, A.A.; Rashid, I.; Al-Remawi, M.; Badwan, A. A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev. Ind. Pharm. 2008, 34, 373–383. [Google Scholar] [CrossRef]
- Rasool, B.K.A.; Fahmy, S.A.; Galeel, O.W.A. Impact of Chitosan as a disintegrant on the bioavailability of furosemide tablets: In vitro evaluation and in vivo simulation of novel formulations. Pak. J. Pharm. Sci. 2012, 25, 815–822. [Google Scholar]
- Badwan, A.A.; Rashid, I.; Omari, M.M.; Darras, F.H. Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar. Drugs 2015, 13, 1519–1547. [Google Scholar] [CrossRef] [Green Version]
- Picker-Freyer, K.M.; Brink, D. Evaluation of Powder and Tableting Properties of Chitosan. AAPS Pharm. Sci. Tech. 2006, 7, E1–E10. [Google Scholar] [CrossRef] [Green Version]
- Dobry, D.E.; Settell, D.M.; Baumann, J.M.; Ray, R.J.; Graham, L.J.; Beyerinck, R.A. A Model-Based Methodology for Spray-Drying Process Development. J. Pharm. Innov. 2009, 4, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Trisopon, K.; Kittipongpatana, N.; Kittipongpatana, O.S. A Spray-Dried, Co-Processed Rice Starch as a Multifunctional Excipient for Direct Compression. Pharmaceutics 2020, 12, 518. [Google Scholar] [CrossRef] [PubMed]
- Mariadoss, A.V.A.; Vinayagam, R.; Senthilkumar, V.; Paulpandi, M.; Murugan, K.; Xu, B.; Gothandam, K.M.; Kotakadi, V.S.; David, E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int. J. Biol. Macromol. 2019, 130, 997–1008. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Mariadoss, A.V.A.; Sathiyaseelan, A.; Wang, M.H. Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties. Int. J. Biol. Macromol. 2020, 165, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Ramachandran, C.; Hu, X.; Oh, D.-H.; Wang, M.H. Chitosan-tea tree oil nanoemulsion and calcium chloride tailored edible coating increase the shelf life of fresh cut red bell pepper. Prog. Org. Coat. 2021, 151, 106010. [Google Scholar] [CrossRef]
- Aranaz, I.; Panos, I.; Peniche, C.; Heras, A.; Acosta, N. Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules 2017, 22, 1980. [Google Scholar] [CrossRef] [Green Version]
- United State Pharmacopeia. USP 42, Powder Flow; United States Pharmacopeia Convention: Rockville, MD, USA, 2019; pp. 7871–7875. [Google Scholar]
- Fell, J.T.; Newton, J.M. Determination of Tablet Strength by the Diametral-Compression Test. J. Pharm. Sci. 1970, 59, 688–691. [Google Scholar] [CrossRef] [PubMed]
- United State Pharmacopeia. USP 42, Disintegration; Pharmacopeial Convention: Rockville, MD, USA, 2019; pp. 6866–6868. [Google Scholar]
- Jonassen, H.; Kjøniksen, A.-L.; Hiorth, M. Stability of Chitosan Nanoparticles Cross-Linked with Tripolyphosphate. Biomacromolecules 2012, 13, 3747–3756. [Google Scholar] [CrossRef]
- Kašpar, O.; Jakubec, M.; Štěpánek, F. Characterization of spray dried chitosan–TPP microparticles formed by two- and three-fluid nozzles. Powder Technol. 2013, 240, 31–40. [Google Scholar] [CrossRef]
- Al-nemrawi, N.K.; Alsharif, S.S.M.; Dave, R.H. Preparation of Chitosan-Tpp Nanoparticles: The Influence of Chitosan Polymeric Properties and Formulation Variables. Int. J. Appl. Pharm. 2018, 10, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Pusch, R. Mechanical properties of clays and clay minerals. In Handbook of Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 247–257. [Google Scholar]
- Brigatti, M.; Galan, E.; Theng, B. Structure and mineralogy of clay minerals. In Handbook of Clay Science; Bergaya, F.T.B., Lagaly, G., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 26–33. [Google Scholar]
- Desai, P.M.; Liew, C.V.; Heng, P.W.S. Review of Disintegrants and the Disintegration Phenomena. J. Pharm. Sci. 2016, 105, 2545–2555. [Google Scholar] [CrossRef] [Green Version]
- Goyanes, A.; Souto, C.; Martinez-Pacheco, R. Chitosan-kaolin coprecipitate as disintegrant in microcrystalline cellulose-based pellets elaborated by extrusion-spheronization. Pharm. Dev. Technol. 2013, 18, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Tokárová, V.; Kašpara, O.; Knejzlík, Z.; Ulbrich, P.; Štěpánek, F. Development of spray-dried chitosan microcarriers for nanoparticle delivery. Powder Technol. 2013, 235, 797–805. [Google Scholar] [CrossRef]
- Santos, D.; Maurício, A.C.; Sencadas, V.; Santos, J.D.; Fernandes, M.H.; Gomes, P.S. Spray Drying: An overview: Biomaterials-Physics and Chemistry. 2017. Available online: http://intechopen.com/chapters/58222 (accessed on 15 August 2021).
- Buys, G.; Plessis, L.; Marais, A.; Kotze, A.; Hamman, J. Direct compression of chitosan: Process and formulation factors to improve powder flow and tablet performance. Curr. Drug Deliv. 2013, 10, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dufour, C.; Zhou, W. Impacts of spray-drying conditions on the physicochemical properties of soy sauce powders using maltodextrin as auxiliary drying carrier. CyTA-J. Food 2015, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chaheen, M.; Bataille, B.; Yassine, A.; Belamie, E.; Sharkawi, T. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties. J. Pharm. Sci. 2019, 108, 3319–3328. [Google Scholar] [CrossRef] [PubMed]
Feed Formulations | Chitosan/Kaolin Ratio | Chitosan/TPP Ratio |
---|---|---|
Chitosan | 100:0 | - |
Kaolin | 0:100 | - |
R1 | 30:70 | 10:1 |
R2 | 30:70 | 20:1 |
R3 | 70:30 | 10:1 |
R4 | 70:30 | 20:1 |
R5 | 50:50 | 20:1 |
R6 | 50:50 | 20:1 |
R7 | 55:45 | 20:1 |
R8 | 55:45 | 10:1 |
R9 | 45:55 | 20:1 |
R10 | 40:60 | 20:1 |
Feed Formulations | Physical Properties of CCK | |||
---|---|---|---|---|
Compressibility Index (%) | Angle of Repose (°) | Loss on Drying (%) | Tablet Hardness (kg) | |
Chitosan | 25.02 ± 0.89 | 33.25 ± 1.95 | 5.34 ± 0.25 | 6.87 ± 0.29 |
Kaolin | 30.81 ± 2.01 | 38.01 ± 0.25 | 5.81 ± 0.66 | 5.64 ± 0.66 |
R1 | 27.14 ± 0.19 | 32.55 ± 1.18 | 4.91 ± 0.44 | 23.87 ± 1.57 |
R2 | 27.24 ± 0.18 | 36.42 ± 1.26 | 5.02 ± 0.32 | 19.97 ± 0.39 |
R3 | 30.56 ± 0.62 | 45.50 ± 1.24 | 5.44 ± 0.30 | 23.45 ± 1.48 |
R4 | 30.82 ± 1.87 | 46.75 ± 1.20 | 5.35 ± 0.47 | 19.44 ± 1.35 |
R5 | 30.23 ± 0.71 | 41.75 ± 1.17 | 5.12 ± 0.35 | 20.01 ± 0.47 |
R6 | 25.25 ± 1.11 | 30.76 ± 1.22 | 4.95 ± 0.34 | 21.03 ± 0.55 |
R7 | 25.88 ± 0.46 | 31.58 ± 1.18 | 4.98 ± 0.49 | 21.74 ± 0.52 |
R8 | 26.42 ± 0.43 | 32.54 ± 1.10 | 5.03 ± 0.30 | 11.20 ± 0.87 |
R9 | 26.22 ± 0.44 | 33.15 ± 1.44 | 5.16 ± 0.29 | 20.15 ± 0.73 |
R10 | 25.35 ± 0.35 | 31.67 ± 1.87 | 5.06 ± 0.39 | 21.23 ± 0.30 |
Feed Formulations | True Density (g/cm3) | Disintegration Time (min) |
---|---|---|
R6 | 1.7222 ± 0.0007 | 10.52 ± 0.26 |
R7 | 1.7142 ± 0.0004 | 4.46 ± 0.32 |
R8 | 1.6947 ± 0.0009 | 5.22 ± 0.15 |
R9 | 1.7942 ± 0.0010 | 10.67 ± 0.33 |
R10 | 1.7967 ± 0.0010 | 9.54 ± 0.41 |
Excipients | Angle of Repose (deg) | Compressibility Index (%) | Hausner Ratio |
---|---|---|---|
Avicel SMCC90® | Excellent (25.33) | Fair (17.92) | Fair (1.22) |
CCK-R7 | Good (31.58) | Passable (25.45) | Passable (1.34) |
Physical mixture | Fair (35.17) | Poor (30.19) | Very poor (1.48) |
Parameters | Avicel SMCC90® | CCK-R7 | Physical Mixture of Chitosan and Kaolin |
---|---|---|---|
Angle of repose (°) | 25.33 ± 0.88 | 31.58 ± 1.18 | 35.17 ± 0.52 |
Compressibility index (%) | 17.92 ± 0.54 | 25.45 ± 0.01 | 30.19 ± 0.01 |
Hausner ratio | 1.22 ± 0.01 | 1.34 ± 0.02 | 1.48 ± 0.02 |
Flow rate (g/s) | 0.502 ± 0.001 | 0.433 ± 0.002 | 0.347 ± 0.005 |
True density (g/cm3) | 1.5982 ± 0.0008 | 1.7141 ± 0.0007 | 1.8278 ± 0.0008 |
Bulk density (g/mL) | 0.37 ± 0.003 | 0.47 ± 0.024 | 0.51 ± 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarangsee, C.; Wattanaarsakit, P.; Sirithunyalug, J.; Leesawat, P. Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing. Pharmaceutics 2021, 13, 1844. https://doi.org/10.3390/pharmaceutics13111844
Yarangsee C, Wattanaarsakit P, Sirithunyalug J, Leesawat P. Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing. Pharmaceutics. 2021; 13(11):1844. https://doi.org/10.3390/pharmaceutics13111844
Chicago/Turabian StyleYarangsee, Chonwipa, Phanphen Wattanaarsakit, Jakkapan Sirithunyalug, and Phuriwat Leesawat. 2021. "Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing" Pharmaceutics 13, no. 11: 1844. https://doi.org/10.3390/pharmaceutics13111844
APA StyleYarangsee, C., Wattanaarsakit, P., Sirithunyalug, J., & Leesawat, P. (2021). Particle Engineering of Chitosan and Kaolin Composite as a Novel Tablet Excipient by Nanoparticles Formation and Co-Processing. Pharmaceutics, 13(11), 1844. https://doi.org/10.3390/pharmaceutics13111844