Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Selection of Articles, Inclusion, and Exclusion Criteria
2.4. Study Analysis
3. Results
3.1. Characteristics of the Studies
3.2. Melaleuca spp.
3.2.1. Chemical Composition of Essential Oils from Melaleuca spp.
3.2.2. Anti-Candida Activity of Melaleuca spp. Essential Oil
Melaleuca Species | Method of Antifungal Susceptibility | Species of Candida (Number of Strains Tested) | Agar Diffusion * or MIC ** | Reference |
---|---|---|---|---|
M. alternifolia | Disk diffusion | C. albicans (19) | 12–25 mm | [14,22] |
C. atlântica (1) | 21.1 mm | [14] | ||
C. dublinenensis (1) | 15 mm | [14] | ||
C. famata (1) | 20.66 mm | [14] | ||
C. glabrata (3) | 11.66–14.33 mm | [14] | ||
C. intermedia (1) | 20 mm | [14] | ||
C. kefyr (2) | 19.33–25.3 mm | [14] | ||
C. lusitaniae (1) | 15.33 mm | [14] | ||
C. marítima (1) | 24.66 mm | [14] | ||
C. parapsilosis (1) | 14.66 mm | [14] | ||
C. sake (1) | 16.33 mm | [14] | ||
M. alternifolia | Broth microdilution | C. albicans (207) | 0.125–4% (v/v) | [4,7,15,23,24,26,27] |
C. boidinii (3) | 0.12–0.25% (v/v) | [27] | ||
C. colliculosa (1) | 0.25% (v/v) | [27] | ||
C. famata (2) | 0.25–0.5% (v/v) | [27] | ||
C. glabrata (52) | 0.156–4% (v/v) | [4,16,27,28] | ||
C. krusei (13) | 0.12–0.625% (v/v) | [4,27,29] | ||
C. lusitaniae (5) | 0.25–1.0% (v/v) | [27] | ||
C. pelliculosa (1) | 0.5% (v/v) | [27] | ||
C. rugosa (1) | 0.12% (v/v) | [27] | ||
C. tropicalis (1) | 8% (v/v) | [27] | ||
M. alternifolia | Broth microdilution | C. albicans (20) | 0.0097–20 mg/mL | [13,14,22] |
C. atlântica (1) | 0.0097 mg/mL | [14] | ||
C. dublinenensis (1) | 0.0195 mg/mL | [14] | ||
C. famata (1) | 0.0097 mg/mL | [14] | ||
C. glabrata (3) | 0.0097–0.625 mg/mL | [14] | ||
C. intermedia (1) | 0.0097 mg/mL | [14] | ||
C. kefyr (2) | 0.0097 mg/mL | [14] | ||
C. lusitaniae (1) | 0.0097 mg/mL | [14] | ||
C. maritima (1) | 0.0097 mg/mL | [14] | ||
C. parapsilosis (1) | 5 mg/mL | [14] | ||
C. sake (1) | 0.0097 mg/mL | [14] | ||
M. alternifolia | Broth microdilution | C. albicans (2) | 625 to >2000 μg/mL | [8,17] |
C. glabrata (1) | >2000 μg/mL | [11] | ||
C. krusei (1) | 2000 μg/mL | [11] | ||
C. orthopsilosis (1) | >2000 μg/mL | [11] | ||
C. parapsilosis (1) | >2000 μg/mL | [11] | ||
C. tropicalis (1) | >2000 μg/mL | [11] | ||
M. leucadendra | Broth microdilution | C. albicans (1) | 64–256 μg/mL | [20] |
M. quinquenervia | Broth microdilution | C. albicans (2) | 1–4 mg/mL | [11] |
M. quinquenervia | C. tropicalis (1) | 1 mg/mL | [11] |
3.2.3. Other Biological Activity of Essential Oils of Melaleuca spp.
3.3. Citrus spp.
3.3.1. Chemical Composition of Essential Oils from Species of Citrus spp.
3.3.2. Anti-Candida Activity of Citrus spp. Essential Oil
Citrus Species | Method of Antifungal Susceptibility | Species of Candida (Number of Strains Tested) | Agar Diffusion * or MIC ** | Reference |
---|---|---|---|---|
C. aurantifolia | Broth microdilution | C. albicans (1) | 625 μL/mL | [8] |
C. aurantium | C. albicans (1) | 625 μL/mL | ||
C. aurantium | Broth microdilution | C. albicans (1) | >2000 μg/mL | [11] |
C. glabrata (1) | >2000 μg/mL | |||
C. krusei (1) | >2000 μg/mL | |||
C. orthopsilosis (1) | >2000 μg/mL | |||
C. parapsilosis (1) | >2000 μg/mL | |||
C. tropicalis (1) | >2000 μg/mL | |||
C. aurantium | Disk diffusion | C. albicans (2) | 19–25.3 mm | [39] |
Broth microdilution | C. albicans (2) | 0.15–0.31% (v/v) | ||
C. bergamia | Broth microdilution | C. albicans (1) | 625 μL/mL | [8] |
C. grandis | Broth microdilution | C. albicans (1) | 4 mg/mL | [21] |
C. tropicalis (1) | 4 mg/mL | |||
C. grandis | Broth microdilution | C. albicans (1) | 0.116–0121% (v/v) | [36] |
C. hystix | Broth microdilution | C. albicans (1) | 1–4 mg/mL | [21] |
C. tropicalis (1) | 2 mg/mL | |||
C. latifolia | Disk diffusion | C. albicans (1) | 9.46 mm | [37] |
C. glabrata (1) | 8.52 mm | |||
C. guilliermondii (1) | 8.94 mm | |||
C. lusitaniae (1) | 8.06 mm | |||
C. tropicalis (1) | 10.87 mm | |||
C. limon | Broth microdilution | C. albicans (1) | 625 μL/mL | [8] |
C. limon | Broth microdilution | C. albicans (1) | 500 μg/mL | [11] |
C. glabrata (1) | 250 μg/mL | |||
C. krusei (1) | 500 μg/mL | |||
C. orthopsilosis (1) | 500 μg/mL | |||
C. parapsilosis (1) | 500 μg/mL | |||
C. tropicalis (1) | 250 μg/mL | |||
C. limonum | Broth microdilution | C. albicans (20) | 0.0097–0.312% (v/v) | [4] |
C. glabrata (14) | 0.0024–0.1565 (v/v) | |||
C. krusei (10) | 0.0024–0.0097% (v/v) | |||
C. limonum | Broth microdilution | C. albicans (183) | <0.043 to >21.325 mg/mL | [38] |
C. glabrata (76) | <0.044 to 5.331 mg/mL | |||
C. limonum | Cylinder-plate diffusion | C. albicans (1) | 0 mm | [34] |
C. glabrata (1) | 44.8–45 mm | |||
C. tropicalis (1) | 0 mm | |||
C. limonum | Cylinder-plate diffusion | C. albicans (1) | 44.8–45 mm | [34] |
C. glabrata (1) | 0 mm | |||
C. tropicalis (1) | 15.3–16.3 mm | |||
Cylinder-plate diffusion | C. albicans (1) | 23–45.0 mm | [34] | |
C. glabrata (1) | 44.6–44.8 mm | |||
C. tropicalis (1) | 0 mm | |||
Cylinder-plate diffusion | C. albicans (1) | 0 mm | [34] | |
C. glabrata (1) | 0 mm | |||
C. tropicalis (1) | 0 mm | |||
Cylinder-plate diffusion | C. albicans (1) | 0 mm | [34] | |
C. glabrata (1) | 0 mm | |||
C. tropicalis (1) | 0 mm | |||
C. nobilis | Broth microdilution | C. albicans (1) | 2000 μg/mL | [11] |
C. glabrata (1) | 2000 μg/mL | |||
C. krusei (1) | >2000 μg/mL | |||
C. orthopsilosis (1) | >2000 μg/mL | |||
C. parapsilosis (1) | >2000 μg/mL | |||
C. tropicalis (1) | >2000 μg/mL | |||
C. paradisi | Broth microdilution | C. albicans (1) | 313 μL/mL | [8] |
C. paradisi | Broth microdilution | C. albicans (30) | 0.0039–1% (v/v) | [23] |
C. paradisi | Broth microdilution | C. glabrata (30) | 0.007–1% (v/v) | [28] |
C. reticulata | Broth microdilution | C. albicans (1) | 625 μL/mL | [8] |
C. reticulata | Broth microdilution | C. albicans (1) | 2000 μg/mL | [11] |
C. krusei (1) | 250 μg/mL | |||
C. glabrata (1) | 1000 μg/mL | |||
C. parapsilosis (1) | 1000 μg/mL | |||
C. orthopsilosis (1) | 250 μg/mL | |||
C. tropicalis (1) | 1,000 μg/mL | |||
C. reticulata var. Blanco | Broth microdilution | C. albicans (1) | 1.00 to > 2000 μg/mL | [11] |
C. krusei (1) | 500 to >2000 μg/mL | |||
C. glabrata (1) | 1000–2000 μg/mL | |||
C. parapsilosis (1) | 1000–2000 μg/mL | |||
C. orthopsilosis (1) | 1000–2000 μg/mL | |||
C. tropicalis (1) | 2.00 to > 2000 μg/mL | |||
C. reticulata Blanco var. cravo | Broth microdilution | C. albicans (1) | 2.00 to > 2000 μg/mL | [11] |
C. krusei (1) | >2000 μg/mL | |||
C. glabrata (1) | >2000 μg/mL | |||
C. parapsilosis (1) | >2000 μg/mL | |||
C. orthopsilosis (1) | >2000 μg/mL | |||
C. tropicalis (1) | 2.00 to >2000 μg/mL | |||
C. reticulata var. Blanco | Broth microdilution | C. albicans (1) | 0.3–4 mg/mL | [21] |
C. tropicalis (1) | 2 mg/mL | |||
C. sinensis | Disk diffusion | C. albicans (1) | 5.51 mm | [37] |
C. glabrata (1) | 5.78 | |||
C. lusitaniae (1) | 2.00 | |||
C. tropicalis (1) | 4.44 mm | |||
C. sinensis | Broth microdilution | C. albicans (1) | >2000 μg/mL | [11] |
C. krusei (1) | >2000 μg/mL | |||
C. glabrata (1) | >2000 μg/mL | |||
C. parapsilosis (1) | >2000 μg/mL | |||
C. orthopsilosis (1) | >2000 μg/mL | |||
C. tropicalis (1) | >2000 μg/mL |
3.3.3. Other Biological Activity of Essential Oils of Citrus spp.
3.4. Cupressus spp.
3.4.1. Chemical Composition of Essential Oils from Species of Cupressus spp.
3.4.2. Anti-Candida Activity of Cupressus spp. Essential Oil
3.4.3. Biological Activity of Essential Oils of Cupressus spp.
3.5. Litsea spp.
3.5.1. Chemical Composition of Litsea Species
3.5.2. Anti-Candida Activity of Litsea spp. Essential Oil
Melaleuca Species | Method of Antifungal Susceptibility | Species of Candida (Number of Strains Tested) | Agar Diffusion * or MIC ** | Reference |
---|---|---|---|---|
C. lusitanica | Disk diffusion | C. albicans (2) | 6–13 mm | [6,44] |
C. glabrata (1) | 6 mm | [6] | ||
C. krusei (1) | 6–10 mm | [6] | ||
C. lusitaniae (1) | 6–13 mm | [6] | ||
C. parapsilosis (1) | 6–7 mm | [6] | ||
C. tropicalis (1) | 6–14 mm | [6] | ||
Macrowell dilution | C. albicans (1) | 0.16% (v/v) | [6] | |
C. glabrata (1) | 1.25% (v/v) | [6] | ||
C. krusei (1) | 1.25% (v/v) | [6] | ||
C. lusitaniae (1) | 0.62% (v/v) | [6] | ||
C. parapsilosis (1) | 1.25% (v/v) | [6] | ||
C. tropicalis (1) | 1.25% (v/v) | [6] | ||
C. arizonica var. glabra | Broth mcrodilution | C. albicans (1) | 0.05 μL/mL | [42] |
C. dublinenensis (1) | 0.01 μL/mL | [42] | ||
C. glabrata (1) | 0.05 μL/mL | [42] | ||
C. parapsilosis (1) | 0.05 μL/mL | [42] | ||
C. tropicalis (1) | 0.001 μL/mL | [42] | ||
C. arizonica var. arizonica | Broth mcrodilution | C. albicans (1) | 0.05 μL/mL | [42] |
C. dublinenensis (1) | 0.01 μL/mL | [42] | ||
C. glabrata (1) | 0.01 μL/mL | [42] | ||
C. parapsilosis (1) | 0.01 μL/mL | [42] | ||
C. tropicalis (1) | 0.01 μL/mL | [42] | ||
C. sempervirens | Broth microdilution | C. albicans (1) | 0.42 ± 0.027 μL/mL | [10] |
C. glabrata (1) | <64 μL/mL | [10] | ||
C. krusei (1) | <64 μL/mL | [10] | ||
C. parapsilosis (1) | 0.757 ± 0.067 μL/mL | [10] | ||
C. sempervirens | Broth microdilution | C. albicans (2) | 250–625 μg/mL | [8,11] |
C. glabrata (1) | 31.25 μg/mL | [11] | ||
C. krusei (1) | 62.5 μg/mL | [11] | ||
C. orthopsilosis (1) | 31.25 μg/mL | [11] | ||
C. parapsilosis (1) | 62.5 μg/mL | [11] | ||
C. tropicalis (1) | 250 μg/mL | [11] | ||
C. macrocarpa | Broth microdilution | C. albicans (2) | 1–2 mg/mL | [21] |
C. tropicalis (1) | 2 mg/mL | [21] | ||
L. viridis | Broth microdilution | C. albicans (1) | 128 μg/mL | [47] |
L. cubeba | Broth microdilution | C. albicans (1) | 500 μg/mL | [11] |
C. krusei (1) | 62.5 μg/mL | [11] | ||
C. glabrata (1) | 250 μg/mL | [11] | ||
C. orthopsilosis (1) | 250 μg/mL | [11] | ||
C. parapsilosis (1) | 500 μg/mL | [11] | ||
C. tropicalis (1) | 1000 μg/mL | [11] |
3.5.3. Other Biological Activity of Essential Oils of Litsea spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arya, N.R.; Rafiq, N.B. Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Dignani, M.C.; Solomkin, J.S.; Anaissie, E. Candida. In Medical Mycology, 1st ed.; Anaissie, E., Mcginnis, M.R., Faller, M.A.P., Eds.; Churchill Livingstone: London, UK, 2003; pp. 195–239. [Google Scholar]
- Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med. 2016, 34, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P.; Gucwa, K.; Kurzyk, E.; Romanowska, E.; Dzierżanowska-Fangrat, K.; Zielińska-Jurek, A. Essential Oils, Silver Nanoparticles and Propolis as Alternative Agents Against Fluconazole Resistant Candida albicans, Candida glabrata and Candida krusei Clinical Isolates. Indian J. Microbiol. 2015, 55, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sabino, R.; Veríssimo, C.; Pereira, Á.A.; Antunes, F. Candida Auris, An Agent of Hospital-Associated Outbreaks: Which Challenging Issues Do We Need to Have in Mind? Microorganisms 2020, 8, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teke, G.N.; Elisée, K.N.; Roger, K.J. Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill. leaves from Cameroon. BMC Complement. Altern. Med. 2013, 13, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertas, A.; Garbusińska, A.; Szliszka, E.; Jureczko, A.; Kowalska, M.; Król, W. The Influence of Tea Tree Oil (Melaleuca alternifolia) on Fluconazole Activity against Fluconazole-Resistant Candida albicans Strains. BioMed Res. Int. 2015, 2015, 590470. [Google Scholar] [CrossRef] [Green Version]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M. Antifungal and Cytotoxic Activities of Sixty Commercially-Available Essential Oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Ibrahim, T.A.; El-Hela, A.A.; El-Hefnawy, H.M.; Al-Taweel, A.M.; Perveen, S. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt. Iran. J. Pharm. Res. 2017, 16, 328–337. [Google Scholar]
- Pedroso, R.D.S.; Balbino, B.L.; Andrade, G.; Dias, M.C.P.S.; Alvarenga, T.A.; Pedroso, R.C.N.; Pimenta, L.P.; Lucarini, R.; Pauletti, P.M.; Januário, A.H.; et al. In Vitro and In Vivo Anti-Candida spp. Activity of Plant-Derived Products. Plants 2019, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, K.; Maruyama, N.; Inoue, S.; Ishibashi, H.; Takizawa, T.; Oshima, H.; Abe, S. The Essential Oil of Melaleuca alternifolia (Tea Tree Oil) and Its Main Component, Terpinen-4-ol Protect Mice from Experimental Oral Candidiasis. Biol. Pharm. Bull. 2012, 35, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
- de Campos-Rasteiro, V.M.; da Costa, A.C.B.P.; Araújo, C.F.; Barros, P.P.; Rossoni, R.D.; Anbinder, A.L.; Jorge, A.O.C.; Junqueira, J.C. Essential oil of Melaleuca alternifolia for the treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC Complement. Altern. Med. 2014, 14, 489. [Google Scholar] [CrossRef] [PubMed]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca alternifolia) Essential Oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Brophy, J.J.; Doran, J.C. Geographic Variation in Oil Characteristics in Melaleuca ericifolia. J. Essent. Oil Res. 2004, 16, 4–8. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Chanotiya, C.S. The essential oil composition of Melaleuca leucadendra L. grown in India: A novel source of (E)-nerolidol. Ind. Crop. Prod. 2015, 69, 224–227. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Salehi, B.; Varoni, E.M.; Sharopov, F.; Yousaf, Z.; Ayatollahi, S.A. Plants of the Melaleuca Genus as Antimicrobial Agents: From Farm to Pharmacy. Phytother. Res. 2017, 31, 1475–1494. [Google Scholar] [CrossRef] [PubMed]
- An, N.T.G.; Huong, L.T.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Ngoc, N.T.B.; Setzer, W.N. Mosquito Larvicidal Activity, Antimicrobial Activity, and Chemical Compositions of Essential Oils from Four Species of Myrtaceae from Central Vietnam. Plants 2020, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crop. Prod. 2015, 71, 197–204. [Google Scholar] [CrossRef]
- Ramadan, M.A.; Shawkey, A.E.; Rabeh, M.A.; Abdellatif, A.O. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J. Herb. Med. 2020, 20, 100289. [Google Scholar] [CrossRef]
- Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; Milligan, S.; Lappin, D.F.; Sherry, L.; Sweeney, P.; Williams, C.; Bagg, J.; Culshaw, S. Antifungal, Cytotoxic, and Immunomodulatory Properties of Tea Tree Oil and Its Derivative Components: Potential Role in Management of Oral Candidosis in Cancer Patients. Front. Microbiol. 2012, 3, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkowska, K.; Nowak, A.; Kunicka-Styczyńska, A.; Siadura, A. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Adv. 2016, 6, 97199–97207. [Google Scholar] [CrossRef] [Green Version]
- Serra, E.; Hidalgo-Bastida, L.A.; Verran, J.; Williams, D.; Malic, S. Antifungal Activity of Commercial Essential Oils and Biocides against Candida albicans. Pathogens 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Rajkowska, K.; Kunicka-Styczyńska, A.; Maroszyńska, M. Selected Essential Oils as Antifungal Agents against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates. Microb. Drug Resist. 2017, 23, 18–24. [Google Scholar] [CrossRef]
- Massa, N.; Cantamessa, S.; Novello, G.; Ranzato, E.; Martinotti, S.; Pavan, M.; Rocchetti, A.; Berta, G.; Gamalero, E.; Bona, E. Antifungal activity of essential oils against azole-resistant and azole-susceptible vaginal Candida glabrata strains. Can. J. Microbiol. 2018, 64, 647–663. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Enhanced Killing of Candida krusei by Polymorphonuclear Leucocytes in the Presence of Subinhibitory Concentrations of Melaleuca alternifolia and “Mentha of Pancalieri” Essential Oils. Molecules 2019, 24, 3824. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.E.; Lopes, L.Q.S.; Bonez, P.C.; Gündel, A.; Martinez, D.S.T.; Sagrillo, M.R.; Giongo, J.L.; Vaucher, R.A.; Raffin, R.P.; Boligon, A.A.; et al. Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb. Pathog. 2017, 104, 125–132. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Liu, B.; Du, L.; Jia, X.; Han, L.; Jin, Y. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids Surf. B Biointerfaces 2016, 141, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Mabberley, D.J. Citrus (Rutaceae): A Review of Recent Advances in Etymology, Systematics and Medical Applications. Blumea Biodivers. Evol. Biogeogr. Plants. 2004, 49, 481–498. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- Białoń, M.; Krzyśko-Łupicka, T.; Koszałkowska, M.; Wieczorek, P.P. The Influence of Chemical Composition of Commercial Lemon Essential Oils on the Growth of Candida Strains. Mycopathologia 2014, 177, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Tirado, C.B.; Stashenko, E.E.; Combariza, M.Y.; Martinez, J.R. Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. J. Chromatogr. 1995, 697, 501–513. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Lin, C.-D.; Khoo, K.A.; Wang, M.-Y.; Kuan, T.-K.; Lin, W.-C.; Zhang, Y.-N.; Wang, Y.-Y. Composition and Bioactivity of Essential Oil from Citrus grandis (L.) Osbeck “Mato Peiyu” Leaf. Molecules 2017, 22, 2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Pérez, N.J.; González-Ávila, M.; Sánchez-Navarrete, J.; Toscano-Garibay, J.D.; Moreno-Eutimio, M.A.; Sandoval-Hernández, T.; Arriaga-Alba, M. Antimycotic Activity and Genotoxic Evaluation of Citrus sinensis and Citrus latifolia Essential Oils. Sci. Rep. 2016, 6, 253–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gucwa, K.; Milewski, S.; Dymerski, T.; Szweda, P. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules 2018, 23, 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nidhi, P.; Rolta, R.; Kumar, V.; Dev, K.; Sourirajan, A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J. Ethnopharmacol. 2020, 262, 113135. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. of Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef]
- Rawat, P.; Khan, M.F.; Kumar, M.; Tamarkar, A.K.; Srivastava, A.K.; Arya, K.R.; Maurya, R. Constituents from fruits of Cupressus sempervirens. Fitoterapia 2010, 81, 162–166. [Google Scholar] [CrossRef]
- Khouaja, W.; Oliveira, R.; Raies, A.; Dias, A.C.P. Antifungal activity of the essential oils from Cupressus arizonica var. arizonica and var. glabra. Ind. Crop. Prod. 2015, 77, 614–623. [Google Scholar] [CrossRef]
- List, P.H.; Horhammer, L. Hager’s Handbuch der Pharmazeutischen Praxis; Springer: Berlin/Heidelberg, Germany, 1972; p. 110. [Google Scholar]
- Tavares, C.S.; Martins, A.; Faleiro, M.L.; Miguel, M.G.; Duarte, L.C.; Gameiro, J.A. Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L. Ind. Crops Prod. 2020, 144, 112034. [Google Scholar] [CrossRef]
- Kong, D.-G.; Zhao, Y.; Li, G.-H.; Chen, B.-J.; Wang, X.-N.; Zhou, H.-L.; Lou, H.-X.; Ren, D.-M.; Shen, T. The genus Litsea in traditional Chinese medicine: An ethnomedical, phytochemical and pharmacological review. J. Ethnopharmacol. 2015, 164, 256–264. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Lee, K.E.; Bajpai, V.K.; Gajurel, P.R.; Gu, K.S.; Kumar, P. Ethnopharmacological Properties and Medicinal Uses of Litsea cubeba. Plants 2019, 8, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, D.T.M.; Chung, N.T.; Huong, L.T.; Hung, N.H.; Ogunwande, I.A.; Dai, D.N.; Setzer, W.N. Chemical Compositions, Mosquito Larvicidal and Antimicrobial Activities of Leaf Essential Oils of Eleven Species of Lauraceae from Vietnam. Plants 2020, 9, 606. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Mehdizadeh, L. Chemistry of Essential Oils and Factors Influencing Their Constituents. In Soft Chemistry and Food Fermentation. Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2017; pp. 379–419. [Google Scholar]
- Scorzoni, L.; Benaducci, T.; Almeida, A.; Silva, D.H.S.; Bolzani, V.S.; Mendes-Giannini, M.J.S. Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts Candida spp. and Cryptococcus sp. Basic Appl. Pharm. Sci. 2007, 28, 25. [Google Scholar]
- Ostrosky, E.A.; Mizumoto, M.K.; Lima, M.E.L.; Kaneko, T.M.; Nishikawa, S.O.; Freitas, B.R. Methods for evaluation of the antimicrobial activity and determination of Minimum Inhibitory Concentration (MIC) of plant extracts. Braz. J. Pharmacogn. 2008, 18, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.A.d.; Antonieti, F.M.P.M.; Röder, D.V.D.d.B.; Pedroso, R.d.S. Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review. Pharmaceutics 2021, 13, 1700. https://doi.org/10.3390/pharmaceutics13101700
Silva RAd, Antonieti FMPM, Röder DVDdB, Pedroso RdS. Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review. Pharmaceutics. 2021; 13(10):1700. https://doi.org/10.3390/pharmaceutics13101700
Chicago/Turabian StyleSilva, Rafael Alves da, Flávia Maria Pinto Monteiro Antonieti, Denise Von Dolinger de Brito Röder, and Reginaldo dos Santos Pedroso. 2021. "Essential Oils of Melaleuca, Citrus, Cupressus, and Litsea for the Management of Infections Caused by Candida Species: A Systematic Review" Pharmaceutics 13, no. 10: 1700. https://doi.org/10.3390/pharmaceutics13101700