Pharmaceutical Application of Tablet Film Coating
Abstract
:1. Introduction
2. Film Coating Methods
3. Process Parameters and Factors Affecting Film Coating Quality
4. Pharmaceutical Application of Film Coating
4.1. Modified Drug Release
4.1.1. Delayed Drug Release
4.1.2. Sustained Drug Release
4.2. Improved Drug Stability
4.3. Taste Masking
4.4. Active Film Coating
5. Recent Technology and Tools Used to Characterize Coated Tablets
5.1. Computational and Mathematical Modeling of the Film Coating Process
5.2. Process Analytical Technology (PAT)
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Mittal, B. Pharmaceutical unit operations. In How to Develop Robust Solid Oral Dosage Forms from Conception to Post-approval; Mittal, B., Ed.; Academic Press: London, UK, 2017; pp. 69–95. [Google Scholar]
- Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.-W.; Park, B.J.; Han, H.-K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics 2020, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, X.; Jia, J.; Li, P. Release property study on the novel divalproex sodium enteric-coated capsules. Saudi Pharm. J. 2016, 24, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.Y.; Missaghi, S.; Tiwari, S.B.; Rajabi-Siahboomi, A.R. Application of ethylcellulose coating to hydrophilic matrices: A strategy to modulate drug release profile and reduce drug release variability. AAPS PharmSciTech 2014, 15, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Jain, A.; Jain, A.; Shrivastava, S.; Jain, A.K. Development and evaluation of film coated aceclofenac and chlorzoxazone tablet with enhanced dissolution rate. J. Pharm. Investig. 2016, 46, 467–474. [Google Scholar] [CrossRef]
- Zhou, D.; Porter, W.R.; Zhang, G.G.Z. Drug stability and degradation studies. In Developing Solid Oral Dosage Forms; Qiu, Y., Zhang, G.G.Z., Porter, W.R., Chen, Y., Liu, L., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 87–124. [Google Scholar]
- Joshi, S.; Petereit, H.U. Film coatings for taste masking and moisture protection. Int. J. Pharm. 2013, 457, 395–406. [Google Scholar] [CrossRef]
- Li, L.; Kemp, I.; Palmer, M.A. DEM-based mechanistic model for scale-up of industrial tablet coating processes. Powder Technol. 2020, 364, 698–707. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, F.; Xu, L.; Yan, Q.; Yang, Y.; Wu, D.; Guo, F.; Yang, G. An update of moisture barrier coating for drug delivery. Pharmaceutics 2019, 11, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Maheshwari, R.; Verma, K.; Sharma, S.; Ghode, P.; Tekade, R.K. Coating technologies in pharmaceutical product development. In Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 665–719. [Google Scholar]
- Yang, Q.; Yuan, F.; Ma, Y.; Shi, K.; Yang, G.; Zhu, J. Electrostatic powder coated osmotic pump tablets: Influence factors of coating powder adhesion and film formation. Powder Technol. 2020, 360, 444–451. [Google Scholar] [CrossRef]
- Bose, S.; Bogner, R.H. Solventless pharmaceutical coating processes: A review. Pharm. Dev. Technol. 2007, 12, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Gautam, R.; Singh, A.; Yasir, M. Film coating technology: Past, present and future. J. Pharm. Sci. Pharmacol. 2014, 1, 57–67. [Google Scholar] [CrossRef]
- Puri, V.; Brancazio, D.; Harinath, E.; Martinez, A.R.; Desai, P.M.; Jensen, K.D.; Chun, J.H.; Braatz, R.D.; Myerson, A.S.; Trout, B.L. Demonstration of pharmaceutical tablet coating process by injection molding technology. Int. J. Pharm. 2018, 535, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Ma, Y.; Zhu, J.; Chow, K.; Shi, K. An update on electrostatic powder coating for pharmaceuticals. Particuology 2017, 31, 1–7. [Google Scholar] [CrossRef]
- Desai, P.M.; Puri, V.; Brancazio, D.; Halkude, B.S.; Hartman, J.E.; Wahane, A.V.; Martinez, A.R.; Jensen, K.D.; Harinath, E.; Braatz, R.D.; et al. Tablet coating by injection molding technology—optimization of coating formulation attributes and coating process parameters. Eur. J. Pharm. Biopharm. 2018, 122, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Achanta, A.S.; Adusumilli, P.S.; James, K.W.; Rhodes, C.T. Development of hot melt coating methods. Drug Dev. Ind. Pharm. 1997, 23, 441–449. [Google Scholar] [CrossRef]
- Jannin, V.; Cuppok, Y. Hot-melt coating with lipid excipients. Int. J. Pharm. 2013, 457, 480–487. [Google Scholar] [CrossRef]
- Zier, K.-I.; Schultze, W.; Leopold, C.S. Combination of a hot-melt subcoating and an enteric coating for moisture protection of hygroscopic Sennae fructus tablets. Pharm. Dev. Technol. 2019, 24, 1210–1217. [Google Scholar] [CrossRef]
- Bertoni, S.; Dolci, L.S.; Albertini, B.; Passerini, N. Spray congealing: A versatile technology for advanced drug-delivery systems. Ther. Deliv. 2018, 9, 833–845. [Google Scholar] [CrossRef]
- Ouyang, H.; Zheng, A.Y.; Heng, P.W.S.; Chan, L.W. Effect of lipid additives and drug on the rheological properties of molten paraffin wax, degree of surface drug coating, and drug release in spray-congealed microparticles. Pharmaceutics 2018, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Ilić, I.; Dreu, R.; Burjak, M.; Homar, M.; Kerc, J.; Srcic, S. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int. J. Pharm. 2009, 381, 176–183. [Google Scholar] [CrossRef]
- Bertoni, S.; Albertini, B.; Passerini, N. Spray congealing: An emerging technology to prepare solid dispersions with enhanced oral bioavailability of poorly water soluble drugs. Molecules 2019, 24, 3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulou, C.; Sorensen, E.; Khair, A.S.; García-Muñoz, S.; Mazzei, L. A model for the fluid dynamic behavior of a film coating suspension during tablet coating. Chem. Eng. Res. Des. 2020, 160, 301–320. [Google Scholar] [CrossRef]
- Christodoulou, C.; Sorensen, E.; García-Muñoz, S.; Mazzei, L. Mathematical modeling of spray impingement and film formation on pharmaceutical tablets during coating. Chem. Eng. Res. Des. 2020, 153, 768–788. [Google Scholar] [CrossRef]
- Ketterhagen, W.; Aliseda, A.; am Ende, M.; Berchielli, A.; Doshi, P.; Freireich, B.; Prpich, A. Modeling tablet film-coating processes. In Predictive Modeling of Pharmaceutical Unit Operation; Pandey, P., Bharadwaj, R., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 273–316. [Google Scholar]
- Toschkoff, G.; Khinast, J.G. Mathematical modeling of the coating process. Int. J. Pharm. 2013, 457, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Tobiska, S.; Kleinebudde, P. Coating uniformity: Influence of atomizing air pressure. Pharm. Dev. Technol. 2003, 8, 39–46. [Google Scholar] [CrossRef]
- Pandey, P.; Bindra, D.S.; Felton, L.A. Influence of process parameters on tablet bed microenvironmental factors during pan coating. AAPS PharmSciTech 2014, 15, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chang, S.-Y.; Kiang, S.; Early, W.; Paruchuri, S.; Desai, D. The measurement of spray quality for pan coating processes. J. Pharm. Innov. 2008, 3, 3–14. [Google Scholar] [CrossRef]
- Wang, J.; Hemenway, J.; Chen, W.; Desai, D.; Early, W.; Paruchuri, S.; Chang, S.-Y.; Stamato, H.; Varia, S. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process. Int. J. Pharm. 2012, 427, 163–169. [Google Scholar] [CrossRef]
- Pandey, P.; Turton, R.; Joshi, N.; Hammerman, E.; Ergun, J. Scale-up of a pan-coating process. AAPS PharmSciTech 2006, 7, e125–e132. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Bindra, D.S. Real-time monitoring of thermodynamic microenvironment in a pan coater. J. Pharm. Sci. 2013, 102, 336–340. [Google Scholar] [CrossRef]
- Wobker, M.E.S.; Mehrotra, A.; Carter, B.H. Use of commercial data loggers to develop process understanding in pharmaceutical unit operations. J. Pharm. Innov. 2010, 5, 169–180. [Google Scholar] [CrossRef]
- Bruce, H.F.; Sheskey, P.J.; Garcia-Todd, P.; Felton, L.A. Novel low-molecular-weight hypromellose polymeric films for aqueous film coating applications. Drug Dev. Ind. Pharm. 2011, 37, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Aliseda, A.; Berchielli, A.; Doshi, P.; Lasheras, J.C. Spray atomization modeling for tablet film coating processes. In Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing; Ende, D.J.A., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 781–799. [Google Scholar]
- Yang, Z.; Craig, D.Q.M. Monitoring film coalescence from aqueous polymeric dispersions using atomic force microscopy: Surface topographic and nano-adhesion studies. Asian J. Pharm. Sci. 2020, 15, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjya, S.; Wurster, D.E. Investigation of the drug release and surface morphological properties of film-coated pellets, and physical, thermal and mechanical properties of free films as a function of various curing conditions. AAPS PharmSciTech 2008, 9, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gendre, C.; Genty, M.; Silva, J.C.d.; Tfayli, A.; Boiret, M.; Lecoq, O.; Baron, M.; Chaminade, P.; Péan, J.M. Comprehensive study of dynamic curing effect on tablet coating structure. Eur. J. Pharm. Biopharm. 2012, 81, 657–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.W.; Flament, M.P.; Siepmann, F.; Busignies, V.; Leclerc, B.; Herry, C.; Tchoreloff, P.; Siepmann, J. Curing of aqueous polymeric film coatings: Importance of the coating level and type of plasticizer. Eur. J. Pharm. Biopharm. 2010, 74, 362–370. [Google Scholar] [CrossRef]
- Shah, H.P.; Prajapati, S.T. Quality by design based development and optimization of novel gastroretentive floating osmotic capsules of clopidogrel bisulfate. J. Pharm. Investig. 2019, 49, 295–311. [Google Scholar] [CrossRef]
- Nair, A.B.; Gupta, R.; Kumria, R.; Jacob, S.; Attimarad, M. Formulation and evaluation of enteric coated tablets of proton pump inhibitor. J. Basic Clin. Pharm. 2010, 1, 215–221. [Google Scholar]
- Liu, J.-Y.; Zhang, X.-X.; Huang, H.-Y.; Lee, B.-J.; Cui, J.-H.; Cao, Q.-R. Esomeprazole magnesium enteric-coated pellet-based tablets with high acid tolerance and good compressibility. J. Pharm. Investig. 2018, 48, 341–350. [Google Scholar] [CrossRef]
- Gobinath, T.; Kamalakkannan, V.; Sambathkumar, R. Formulation and evaluation of enteric tablets of pantoprazole. J. Chem. Pharm. Sci. 2014, 7, 176–184. [Google Scholar]
- Tirpude, R.N.; Puranik, P.K. Rabeprazole sodium delayed-release multiparticulates: Effect of enteric coating layers on product performance. J. Adv. Pharm. Technol. Res. 2011, 2, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Howden, C.W. Update on dual delayed-release PPI formulations. Gastroenterol. Hepatol. 2010, 6, 417–419. [Google Scholar]
- Grady, H.; Murakawa, Y.; Mulford, D.; Kukulka, M. Development of dexansoprazole delayed-release capsules, a dual delayed-release proton pump inhibitor. J. Pharm. Sci. 2019, 108, 3496–3501. [Google Scholar] [CrossRef] [PubMed]
- Moroz, E.; Matoori, S.; Leroux, J.-C. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.Y.; Martinez, J.; Carnagarin, R.; Dass, C.R. In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor. J. Pharm. Pharmacol. 2017, 69, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, G.; Leroux, J.-C. Improving the stability and activity of oral therapeutic enzymes—Recent advances and perspectives. Pharm. Res. 2014, 31, 1099–1105. [Google Scholar] [CrossRef]
- Patole, V.C.; Pandit, A.P. Mesalamine-loaded alginate microspheres filled in enteric coated HPMC capsules for local treatment of ulcerative colitis: In vitro and in vivo characterization. J. Pharm. Investig. 2018, 48, 257–267. [Google Scholar] [CrossRef]
- Pawar, P.K.; Gautam, C. Design, optimization and evaluation of mesalamine matrix tablet for colon drug delivery system. J. Pharm. Investig. 2016, 46, 67–78. [Google Scholar] [CrossRef]
- Maroni, A.; Del Curto, M.D.; Zema, L.; Foppoli, A.; Gazzaniga, A. Film coatings for oral colon delivery. Int. J. Pharm. 2013, 457, 372–394. [Google Scholar] [CrossRef]
- Ibekwe, V.C.; Khela, M.K.; Evans, D.F.; Basit, A.W. A new concept in colonic drug targeting: A combined pH-responsive and bacterially-triggered drug delivery technology. Aliment. Pharm. Ther. 2008, 28, 911–916. [Google Scholar] [CrossRef]
- Ranmal, S.R.; Yadav, V.; Basit, A.W. Targeting the end goal: Opportunities & innovations in colonic drug delivery. ON Drug Delivery Mag. 2017, 77, 22–26. [Google Scholar]
- Dodoo, C.C.; Wang, J.; Basit, A.W.; Stapleton, P.; Gaisford, S. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int. J. Pharm. 2017, 530, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M. ColoPulse tablets in inflammatory bowel disease. J. Control. Release 2013, 172, 618–624. [Google Scholar] [CrossRef]
- Maurer, J.M.; Schellekens, R.C.; Van Rieke, H.M.; Wanke, C.; Iordanov, V.; Stellaard, F.; Wutzke, K.D.; Dijkstra, G.; van der Zee, M.; Woerdenbag, H.J. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of ColoPulse tablets. PLoS ONE 2015, 10, e0129076. [Google Scholar] [CrossRef] [PubMed]
- Maurer, J.M.; Hofman, S.; Schellekens, R.C.; Tonnis, W.F.; Dubois, A.O.; Woerdenbag, H.J.; Hinrichs, W.L.; Kosterink, J.G.; Frijlink, H.W. Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study. Int. J. Pharm. 2016, 505, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G.B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int. J. Pharm. 2015, 496, 414–420. [Google Scholar] [CrossRef]
- Khan, Z.; Govender, M.; Indermun, S.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Meyer, L.C.R.; Pillay, V. In vitro and in vivo evaluation of an oral multi-layered multi-disk tablet for specialized chronotherapeutic drug delivery. J. Drug Deliv. Sci. Technol. 2018, 45, 39–44. [Google Scholar] [CrossRef]
- Thapaliya, R.; Shrestha, K.; Sharma, A.; Dhakal, N.; Manandhar, P.; Shrestha, S.; Bhattarai, R. Physicochemical characterization of naproxen microcrystals for colon specific pulsatile drug delivery designed using pulsincap technique. J. Pharm. Investig. 2019, 49, 553–564. [Google Scholar] [CrossRef]
- Luo, D.; Kim, J.H.; Park, C.; Oh, E.; Park, J.-B.; Cui, J.-H.; Cao, Q.-R.; Lee, B.-J. Design of fixed dose combination and physicochemical characterization of enteric-coated bilayer tablet with circadian rhythmic variations containing telmisartan and pravastatin sodium. Int. J. Pharm. 2017, 523, 343–356. [Google Scholar] [CrossRef]
- Jain, N.; Devi, V.K. In vitro evaluation of once a day chronotherapeutic drug delivery system of Gymnema sylvestre. Ind. Crops Prod. 2016, 88, 58–64. [Google Scholar] [CrossRef]
- Cerciello, A.; Auriemma, G.; Del Gaudio, P.; Sansone, F.; Aquino, R.P.; Russo, P. A novel core–shell chronotherapeutic system for the oral administration of ketoprofen. J. Drug Deliv. Sci. Technol. 2016, 32, 126–131. [Google Scholar] [CrossRef]
- Rhodes, C.T.; Porter, S.C. Coatings for controlled-release drug delivery systems. Drug Dev. Ind. Pharm. 1998, 24, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, F.; Siepmann, J.; Walther, M.; MacRae, R.J.; Bodmeier, R. Polymer blends for controlled release coatings. J. Control. Release 2008, 125, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.A.A.; Roberts, M.; Seton, L.; Ford, J.L.; Levina, M.; Rajabi-Siahboomi, A.R. Film-coated matrix mini-tablets for the extended release of a water-soluble drug. Drug Dev. Ind. Pharm. 2015, 41, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Felton, L.A.; Porter, S.C. An update on pharmaceutical film coating for drug delivery. Expert Opin. Drug Deliv. 2013, 10, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, K.; Winnicka, K. Ethylcellulose—A pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials 2019, 12, 3386. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Chauhan, R.; Singh, S.; Kulkarni, S.; Jain, S. Optimization of coating material for sustained release venlafaxine hydrochloride tablet. Int. J. Life Sci. Pharma Res. 2015, 5, 1–12. [Google Scholar]
- Wan, D.; Zhao, M.; Zhang, J.; Luan, L. Development and in vitro-in vivo evaluation of a novel sustained-release loxoprofen pellet with double coating layer. Pharmaceutics 2019, 11, 260. [Google Scholar] [CrossRef] [Green Version]
- Monton, C.; Kulvanich, P. Characterization of crosslinked hard gelatin capsules for a structural assembly of elementary osmotic pump delivery system. J. Pharm. Investig. 2019, 49, 655–665. [Google Scholar] [CrossRef]
- Kundawala, A.; Sheth, P.; Maheshwari, D. Sandwiched osmotic tablet for controlled release of metoprolol succinate. J. Pharm. Investig. 2016, 46, 29–40. [Google Scholar] [CrossRef]
- Ahmed, K.; Shoaib, M.H.; Yousuf, R.I.; Qazu, F.; Anwer, S.; Nasiri, M.I.; Mahmood, Z.A. Use of Opadry® CA—A celloulose acetate/polyethylene glycol system for rate-controlled osmotic drug delivery of high soluble antispastic agent Eperisone HCl. Adv. Polyum. Technol. 2018, 37, 2730–2742. [Google Scholar] [CrossRef]
- Ahmed, K.; Shoaib, M.H.; Yousuf, R.I.; Siddiqui, F.; Qazi, F.; Iftikhar, J.; Ahmed, F.R.; Nasiri, M.I. Comparative pharmacokinetics of osmotic-controlled and immediate-release Eperisone tablet formulation in healthy human subjects using a sensitive plasma LC-ESI-MS/MS method. Sci. Rep. 2020, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Siddique, S.; Majumder, S.; Abdul, M.I.M.; Rahman, S.A.U.; Lateef, D.; Dan, S.; Bose, A. A systemic approach on understanding the role of moisture in pharmaceutical product degradation and its prevention: Challenges and perspectives. Biomed. Res. 2018, 29, 3336–3343. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and Photostabilization of Drugs and Drug Products. Int. J. Photoenergy 2016, 2016, 19. [Google Scholar] [CrossRef] [Green Version]
- Odani, N.; Mohan, S.; Kato, E.; Feng, H.; Li, Y.; Hossain, M.N.; Drennen, J.K.; Anderson, C.A. Determining the effect of photodegradation on film coated nifedipine tablets with terahertz based coating thickness measurements. Eur. J. Pharm. Biopharm. 2019, 145, 35–41. [Google Scholar] [CrossRef]
- Heinämäki, J.; Halenius, A.; Paavo, M.; Alakurtti, S.; Pitkänen, P.; Pirttimaa, M.; Paaver, U.; Kirsimäe, K.; Kogermann, K.; Yliruusi, J. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. Int. J. Pharm. 2015, 489, 91–99. [Google Scholar] [CrossRef]
- Islam, S.A.; Hossain, M.A.; Kabir, A.H.; Kabir, S.; Hossain, M.K. Study of moisture absorption by ranitidine hydrochloride: Effect of % RH, excipients, dosage forms and packing materials. Dhaka Univ. J. Pharm. Sci. 2008, 7, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Dave, A.; Vasava, A.; Patel, P. Formulation and characterization of sustained release dosage form of moisture sensitive drug. Int. J. Pharm. Investig. 2015, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Almukainzi, M.; Araujo, G.L.B.; Löbenberg, R. Orally disintegrating dosage forms. J. Pharm. Investig. 2019, 49, 229–243. [Google Scholar] [CrossRef]
- Faisal, W.; Farag, F.; Abdellatif, A.A.H.; Abbas, A. Taste masking approaches for medicines. Curr. Drug Deliv. 2018, 15, 167–185. [Google Scholar] [CrossRef]
- Nishiyama, T.; Ogata, T.; Ozeki, T. Preparation of bitter taste-masking granules of lafutidine for orally disintegrating tablets using water-insoluble/soluble polymer combinations. J. Drug Deliv. Sci. Technol. 2016, 32, 38–42. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.; Desai, D.; Chang, S.-Y.; Kiang, S.; Lyngberg, O. A strategy for tablet active film coating formulation development using a content uniformity model and quality by design principles. In Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture; Reklaitis, G.V., Seymour, C., García-Munoz, S., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 193–233. [Google Scholar]
- Moon, C.; Oh, E. Rationale and strategies for formulation development of oral fixed dose combination drug products. J. Pharm. Investig. 2016, 46, 615–631. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.W.; Kuk, Y.M.; Park, C.W.; Rhee, Y.S.; Oh, T.O.; Weon, K.Y.; Park, E.S. Investigation of an active film coating to prepare new fixed-dose combination tablets for treatment of diabetes. Int. J. Pharm. 2012, 427, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.; Rao, V.; Guo, H.; Li, D.; Stein, D.; Hu, F.Y.; Kiesnowski, C. An active film-coating approach to enhance chemical stability of a potent drug molecule. Pharm. Dev. Techonl. 2012, 17, 227–235. [Google Scholar] [CrossRef]
- Seo, K.S.; Han, H.-K. Multilayer-coated tablet of clopidogrel and rosuvastatin: Preparation and in vitro/in vivo characterization. Pharmaceutics 2019, 11, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottavian, M.; Barolo, M.; García-Muñoz, S. Multivariate image and texture analysis for film-coated tablets elegance assessment. IFAC Proc. Vol. 2013, 46, 331–336. [Google Scholar] [CrossRef]
- Jańczyk, M.; Kutyła, A.; Sollohub, K.; Wosicka, H.; Cal, K.; Ciosek, P. Electronic tongue for the detection of taste-masking microencapsulation of active pharmaceutical substances. Bioelectrochemistry 2010, 80, 94–98. [Google Scholar] [CrossRef]
- Sawarkar, S.P.; Deshpande, S.G.; Bajaj, A.N.; Soni, P.S.; Pandit, P.; Nikam, V.S. Potential of low molecular weight natural polysaccharides for colon targeted formulation and its evaluation in human by gamma scintigraphy. J. Pharm. Investig. 2020, 50, 173–187. [Google Scholar] [CrossRef]
- Tung, N.-T.; Nguyen, C.-H.; Nguyen, V.-D.; Nguyen, T.-H.-T.; Nguyen, V.-L.; Tran, C.-S.; Pham, T.-M.-H. Formulation and in vivo imaging evaluation of colonic targeting tablets prepared by a simple dry powder coating technique. J. Pharm. Investig. 2019. [Google Scholar] [CrossRef]
- Maurer, L.; Leuenberger, H. Terahertz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets. Int. J. Pharm. 2009, 370, 8–16. [Google Scholar] [CrossRef]
- Ensslin, S.; Moll, K.P.; Paulus, K.; Mäder, K. New insight into modified release pellets - internal structure and drug release mechanism. J. Control. Release 2008, 128, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Hou, L.; Schoener, C.A.; Wu, P.; Gao, H. Exploring the drug migration process through ethyl cellulose-based films from infrared-spectral insights. Eur. J. Pharm. Biopharm. 2015, 93, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bernin, D.; Marucci, M.; Boissier, C.; Hjärtstam, J.; Olsson, U.; Abrahmsén-Alami, S. Real time MRI to elucidate the functionality of coating films intended for modified release. J. Control. Release 2019, 311–312, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Turton, R. The application of modeling techniques to film-coating processes. Drug Dev. Ind. Pharm. 2010, 36, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Choi, D.H. Application of mechanism-based modeling to predict drug quality during the pharmaceutical unit operations of granulation and compression: A review. J. Pharm. Investig. 2020. [Google Scholar] [CrossRef]
- Boehling, P.; Toschkoff, G.; Knop, K.; Kleinebudde, P.; Just, S.; Funke, A.; Rehbaum, H.; Khinast, J.G. Analysis of large-scale tablet coating: Modeling, simulation and experiments. Eur. J. Pharm. Sci. 2016, 90, 14–24. [Google Scholar] [CrossRef]
- Boehling, P.; Toschkoff, G.; Just, S.; Knop, K.; Kleinebudde, P.; Funke, A.; Rehbaum, H.; Rajniak, P.; Khinast, J.G. Simulation of a tablet coating process at different scales using DEM. Eur. J. Pharm. Sci. 2016, 93, 74–83. [Google Scholar] [CrossRef]
- Kalbag, A.; Wassgren, C.; Penumetcha, S.S.; Perez-Ramos, J. Inter-tablet coating variability: Residence times in a horizontal pan coater. Chem. Eng. Sci. 2008, 63, 2881–2894. [Google Scholar] [CrossRef]
- Werner, S.R.L.; Jones, J.R.; Paterson, A.H.J.; Archer, R.H.; Pearce, D.L. Air-suspension particle coating in the food industry: Part I—micro-level process approach. Powder Technol. 2007, 171, 34–45. [Google Scholar] [CrossRef]
- Jiang, Z.; Rieck, C.; Bück, A.; Tsotsas, E. Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach. Chem. Eng. Sci. 2020, 211, 115289. [Google Scholar] [CrossRef]
- Korasa, K.; Vrečer, F. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms. Eur. J. Pharm. Sci. 2018, 111, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Haaser, M.; Naelapää, K.; Gordon, K.C.; Pepper, M.; Rantanen, J.; Strachan, C.J.; Taday, P.F.; Zeitler, J.A.; Rades, T. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging. Eur. J. Pharm. Biopharm. 2013, 85, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Huang, Y.; Mei, L.; Wu, L.; Chen, L.; Pan, X.; Wu, C. Study progression in application of process analytical technologies on film coating. Asian J. Pharm. Sci. 2015, 10, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Mizushima, M.; Kawamura, T.; Takahashi, K.; Nitta, K.T. In situ near-infrared spectroscopic studies of the structural changes of polyethylene during melting. Polym. J. 2012, 44, 162–166. [Google Scholar] [CrossRef]
- Radtke, J.; Kleinebudde, P. Real-time monitoring of multi-layered film coating processes using Raman spectroscopy. Eur. J. Pharm. Biopharm. 2020, 153, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mühlig, A.; Bocklitz, T.; Labugger, I.; Dees, S.; Henk, S.; Richter, E.; Andres, S.; Merker, M.; Stöckel, S.; Weber, K.; et al. LOC-SERS: A promising closed system for the identification of Mycobacteria. Anal. Chem. 2016, 88, 7998–8004. [Google Scholar] [CrossRef] [PubMed]
- Foroughi-Dahr, M.; Sotudeh-Gharebagh, R.; Mostoufi, N. Development of a PAT tool for monitoring the Wurster coater performance. Int. J. Pharm. 2019, 561, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Müller, R.; Gordon, K.C.; Kleinebudde, P.; Pepper, M.; Rades, T.; Shen, Y.; Taday, P.F.; Zeitler, J.A. Applications of terahertz pulsed imaging to sustained-release tablet film coating quality assessment and dissolution performance. J. Control. Release 2008, 127, 79–87. [Google Scholar] [CrossRef]
- Ho, L.; Müller, R.; Römer, M.; Gordon, K.; Heinämäki, J.; Kleinebudde, P.; Pepper, M.; Rades, T.; Shen, Y.; Strachan, C. Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J. Control. Release 2007, 119, 253–261. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, Z.; Markl, D.; Zeitler, J.A.; Shen, Y. A review of the applications of OCT for analysing pharmaceutical film coatings. Appl. Sci. 2018, 8, 2700. [Google Scholar] [CrossRef] [Green Version]
- Sacher, S.; Wahl, P.; Weißensteiner, M.; Wolfgang, M.; Pokhilchuk, Y.; Looser, B.; Thies, J.; Raffa, A.; Khinast, J.G. Shedding light on coatings: Real-time monitoring of coating quality at industrial scale. Int. J. Pharm. 2019, 566, 57–66. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, K.-S.; Bajracharya, R.; Lee, S.H.; Han, H.-K. Pharmaceutical Application of Tablet Film Coating. Pharmaceutics 2020, 12, 853. https://doi.org/10.3390/pharmaceutics12090853
Seo K-S, Bajracharya R, Lee SH, Han H-K. Pharmaceutical Application of Tablet Film Coating. Pharmaceutics. 2020; 12(9):853. https://doi.org/10.3390/pharmaceutics12090853
Chicago/Turabian StyleSeo, Ki-Soo, Rajiv Bajracharya, Sang Hoon Lee, and Hyo-Kyung Han. 2020. "Pharmaceutical Application of Tablet Film Coating" Pharmaceutics 12, no. 9: 853. https://doi.org/10.3390/pharmaceutics12090853
APA StyleSeo, K.-S., Bajracharya, R., Lee, S. H., & Han, H.-K. (2020). Pharmaceutical Application of Tablet Film Coating. Pharmaceutics, 12(9), 853. https://doi.org/10.3390/pharmaceutics12090853