The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility
Abstract
1. Introduction
2. HBV Biological Organization
2.1. Organization and Structure of the Genome
2.2. The Viral Transmission of HBV and Replication Cycle
2.3. HBV Replication and the Contribution of Cell Division to HBV Resolution
3. Cell Culture Systems to Study HBV Pathogenesis
3.1. Primary Human Hepatocytes
3.2. Human Fetal Hepatocytes
3.3. Huh7
3.4. HepG2.2.15 Cells
3.5. Vector-Based Systems
3.6. HepAD38 (EF9 and EFS19) Cells
3.7. Ad-HBV 1.3 System
3.8. HepaRG Cells
3.9. The 3D Culture
3.10. HBV Baculovirus System
3.11. Co-Culture System
3.12. Primary Tupaia Hepatocytes
4. In Vitro Systems Based on Induced Pluripotent Stem (iPS)
Cell-Derived Human Hepatocytes
5. HepG2-NTCP Cell Culture System for Studying HBV
5.1. NTCP, an Effective HBV Entry Receptor
5.2. HepG2 Cell Culture
5.3. HepG2-NTCP Cell Culture
6. Phenotypic Drug Susceptibility and Resistance Testing Using Cell Culture Systems
7. HepG2 and HepG2-NTCP Cell Culture Systems in the Exploration of HBV Pathogenesis and Treatment for HBV Disease
7.1. HBV Entry Inhibitors
7.2. Terminal Protein Domain Inhibitors
7.3. Reverse Transcriptase Inhibitors
7.4. Ribonuclease H Inhibitors
7.5. Inhibiting HBV Through Host-Polymerase Interactions
7.6. Capsid Inhibitors
7.7. siRNAs and Antisense Oligonucleotides (ASOs)
7.8. cccDNA Formation Inhibitors
7.9. Genetic Targeting of Host Factors
8. Conclusions and Future Developments
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARV | antiretroviral |
AASLD | American Association for the Study of Liver Diseases |
ASOs | antisense oligonucleotides |
ART | antiretroviral therapy |
ALT | alanine aminotransferase |
α-HTs | alpha-hydroxytropolones |
CAMs | capsid assembly modulators |
cccDNA | covalently closed circular deoxyribonucleic acid |
CYP450 | cytochrome P450 enzymes |
CMV-IE | cytomegalovirus immediate-early |
DAAs | direct-acting antivirals |
DNA | deoxyribonucleic acid |
DMSO | dimethyl sulfoxide |
FTC | emtricitabine |
FDA | Food and Drug Administration |
GFP | green fluorescent protein |
IC50 | half-maximal inhibitory concentration |
HBx | HBV X protein |
HBV | Hepatitis B virus |
HCV | hepatitis C virus |
HBeAg | hepatitis B e antigen |
HBcAg | hepatitis B core antigen |
HBsAg | hepatitis B surface antigen |
HSPGs | heparan sulphate proteoglycans |
HLCs | hepatocyte-like cells |
HSPG | heparan sulphate proteoglycan |
HCC | hepatocellular carcinoma |
HMM | hepatocyte maintenance medium |
HepG2 cells | human hepatoblastoma cell line |
HepG2-NTCP cell | HepG2-sodium taurocholate co-transporting polypeptide |
HepaRG cells | human hepatic bipotent progenitor cell line |
Huh7 | human liver carcinoma cell line |
Huh7-NTCP | Huh7-sodium taurocholate co-transporting polypeptide |
HepAD38 (EF9,EFS19) cells | liver-derived cell lines |
HepG2.2.15 cells | human hepatoblastoma cell line |
HSP90 | heat shock protein 90 |
HSP70 | heat shock protein 70 |
HAART | highly active antiretroviral therapy |
HTS | high-throughput screening |
HTAs | host-targeting antivirals |
HIV | human immunodeficiency virus |
iPSCs | inducible pluripotent stem cells |
3TC | lamivudine |
miRNA-122 | microRNA-122 |
MOI | multiplicity of infection |
MX2 | myxovirus resistance protein 2 |
NAs | nucleos(t)ide analogues |
ORF | open reading frame |
PHH | primary human hepatocyte |
PEG | poly-ethylene glycol |
pgRNA | pregenomic RNA |
POLK | DNA polymerase κ |
RT | reverse transcriptase |
RNase H | ribonuclease H |
RHIs | RNase H inhibitors |
rcDNA | relaxed circular deoxyribonucleic acid |
siRNAs | small interfering RNAs |
SNPs | single nucleotide polymorphisms |
NTCP | sodium taurocholate co-transporting polypeptide |
TDF | tenofovir disoproxil fumarate |
TAF | tenofovir alafenamide |
EASL | European Association for the Study of the Liver |
APASL | Asian Pacific Association for the Study of the Liver |
TP | terminal protein |
2D | two-dimensional |
3D | three-dimensional |
TDP2 | tyrosyl-DNA-phosphodiesterase 2 |
CDC | U.S. Centers for Disease Control and Prevention |
References
- WHO. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 2 July 2024).
- CDC. Fast Facts: Global Hepatitis B Vaccination. Available online: https://www.cdc.gov/global-hepatitis-b-vaccination/data-research/index.html#:~:text=Approximately%20296%20million%20people1,liver)%2C%20and%20liver%20failure (accessed on 2 July 2024).
- Faniyi, A.A.; Okesanya, O.J.; Manirambona, E.; Oso, T.A.; Olaleke, N.O.; Nukpezah, R.N.; Ilesanmi, A.O.; Lucero-Prisno, D.E., III. Advancing public health policies to combat Hepatitis B in Africa: Challenges, advances, and recommendations for meeting 2030 targets. J. Med. Surg. Public Health 2024, 2, 100058. [Google Scholar] [CrossRef]
- Seremba, E.; Ssempijja, V.; Kalibbala, S.; Gray, R.H.; Wawer, M.J.; Nalugoda, F.; Casper, C.; Phipps, W.; Ocama, P.; Serwadda, D. Hepatitis B incidence and prevention with antiretroviral therapy among HIV-positive individuals in Uganda. Aids 2017, 31, 781–786. [Google Scholar] [CrossRef]
- Yardeni, D.; Chang, K.-M.; Ghany, M.G. Current best practice in hepatitis B management and understanding long-term prospects for cure. Gastroenterology 2023, 164, 42–60. [Google Scholar] [CrossRef] [PubMed]
- CLINICALINFO.HIV.GOV. Considerations for Antiretroviral Use in Patients with Coinfections. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/hepatitis-b-virus-hiv-coinfection (accessed on 3 July 2024).
- WHO. Guidelines for the Prevention, Care, and Treatment of Persons with Chronic Hepatitis B Infection. Available online: https://www.who.int/publications/i/item/9789241549059 (accessed on 7 December 2024).
- Lai-Hung Wong, G.; Lemoine, M. The 2024 updated WHO guidelines for the prevention and management of chronic hepatitis B: Main changes and potential implications for the next major liver society clinical practice guidelines. J. Hepatol. 2025, 82, 918–925. [Google Scholar] [CrossRef]
- Terrault, N.A.; Lok, A.S.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Sarin, S.; Kumar, M.; Lau, G.; Abbas, Z.; Chan, H.; Chen, C.; Chen, D.; Chen, H.; Chen, P.; Chien, R. Asian-Pacific clinical practice guidelines on the management of hepatitis B: A 2015 update. Hepatol. Int. 2016, 10, 1–98. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series (☆). J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention Care and Treatment of Persons with Chronic Hepatitis B Infection; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Wedemeyer, H.; Schöneweis, K.; Bogomolov, P.; Blank, A.; Voronkova, N.; Stepanova, T.; Sagalova, O.; Chulanov, V.; Osipenko, M.; Morozov, V. Safety and efficacy of bulevirtide in combination with tenofovir disoproxil fumarate in patients with hepatitis B virus and hepatitis D virus coinfection (MYR202): A multicentre, randomised, parallel-group, open-label, phase 2 trial. Lancet Infect. Dis. 2023, 23, 117–129. [Google Scholar] [CrossRef]
- Sibiya, T.; Ghazi, T.; Chuturgoon, A. The potential of spirulina platensis to ameliorate the adverse effects of highly active antiretroviral therapy (HAART). Nutrients 2022, 14, 3076. [Google Scholar] [CrossRef]
- Howell, J.; Pedrana, A.; Schroeder, S.E.; Scott, N.; Aufegger, L.; Atun, R.; Baptista-Leite, R.; Hirnschall, G.; Hutchinson, S.J.; Lazarus, J.V. A global investment framework for the elimination of hepatitis B. J. Hepatol. 2021, 74, 535–549. [Google Scholar] [CrossRef]
- Wong, G.L.-H.; Wong, V.W.-S. Eliminating hepatitis B virus as a global health threat. Lancet Infect. Dis. 2016, 16, 1313–1314. [Google Scholar] [CrossRef]
- Xu, M.; Terrault, N.A. Hepatitis B Virus Elimination Strategies. Curr. Hepatol. Rep. 2024, 23, 268–277. [Google Scholar] [CrossRef]
- Ni, Y.; Lempp, F.A.; Mehrle, S.; Nkongolo, S.; Kaufman, C.; Fälth, M.; Stindt, J.; Königer, C.; Nassal, M.; Kubitz, R. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014, 146, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhong, G.; Xu, G.; He, W.; Jing, Z.; Gao, Z.; Huang, Y.; Qi, Y.; Peng, B.; Wang, H. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1, e00049. [Google Scholar] [CrossRef]
- Jain, A.K.; Singh, D.; Dubey, K.; Maurya, R.; Mittal, S.; Pandey, A.K. Models and methods for in vitro toxicity. In In Vitro Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 45–65. [Google Scholar]
- Ramirez, T.; Strigun, A.; Verlohner, A.; Huener, H.-A.; Peter, E.; Herold, M.; Bordag, N.; Mellert, W.; Walk, T.; Spitzer, M. Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch. Toxicol. 2018, 92, 893–906. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Biological Agents; International Agency for Research on Cancer: Lyon, France, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304352/#:~:text=HBV%20is%20an%20enveloped%20virus,bound%20to%20the%20viral%20polymerase. (accessed on 14 August 2024).
- Magnius, L.; Taylor, J.; Mason, W.S.; Sureau, C.; Dény, P.; Norder, H.; Consortium, I.R. ICTV virus taxonomy profile: Deltavirus. J. Gen. Virol. 2018, 99, 1565–1566. [Google Scholar] [CrossRef]
- Seeger, C.; Mason, W.S. Molecular biology of hepatitis B virus infection. Virology 2015, 479, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Revill, P.; Testoni, B.; Locarnini, S.; Zoulim, F. Global strategies are required to cure and eliminate HBV infection. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 239–248. [Google Scholar] [CrossRef]
- Dryden, K.A.; Wieland, S.F.; Whitten-Bauer, C.; Gerin, J.L.; Chisari, F.V.; Yeager, M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell 2006, 22, 843–850. [Google Scholar] [CrossRef]
- Le Seyec, J.; Chouteau, P.; Cannie, I.; Guguen-Guillouzo, C.; Gripon, P. Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J. Virol. 1998, 72, 5573–5578. [Google Scholar] [CrossRef]
- Blanchet, M.; Sureau, C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J. Virol. 2007, 81, 5841–5849. [Google Scholar] [CrossRef]
- Schulze, A.; Schieck, A.; Ni, Y.; Mier, W.; Urban, S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J. Virol. 2010, 84, 1989–2000. [Google Scholar] [CrossRef]
- Kao, J.-H.; Chen, P.-J.; Chen, D.-S. Recent advances in the research of hepatitis B virus-related hepatocellular carcinoma: Epidemiologic and molecular biological aspects. Adv. Cancer Res. 2010, 108, 21–72. [Google Scholar]
- Chen, B.F.; Liu, C.J.; Jow, G.M.; Chen, P.J.; Kao, J.H.; Chen, D.S. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases. Gastroenterology 2006, 130, 1153–1168. [Google Scholar] [CrossRef] [PubMed]
- Miyanohara, A.; Imamura, T.; Araki, M.; Sugawara, K.; Ohtomo, N.; Matsubara, K. Expression of hepatitis B virus core antigen gene in Saccharomyces cerevisiae: Synthesis of two polypeptides translated from different initiation codons. J. Virol. 1986, 59, 176–180. [Google Scholar] [CrossRef]
- Kramvis, A.; Kostaki, E.-G.; Hatzakis, A.; Paraskevis, D. Immunomodulatory function of HBeAg related to short-sighted evolution, transmissibility, and clinical manifestation of hepatitis B virus. Front. Microbiol. 2018, 9, 2521. [Google Scholar] [CrossRef] [PubMed]
- Hadziyannis, S.J.; Lieberman, H.M.; Karvountzis, G.G.; Shafritz, D.A. Analysis of Liver Disease, Nuclear HBcAg, Viral Replication, and Hepatitis B Virus DNA in Liver and Serum of HBcAg Vs. Anti-HBe Positive Carriers of Hepatitis B Virus. Hepatology 1983, 3, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.J.; Ghany, M. Hepatitis B e Antigen—The Dangerous Endgame of Hepatitis B. N. Engl. J. Med. 2002, 347, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Ponzetto, A.; Hoyer, B.H.; Popper, H.; Engle, R.; Purcell, R.H.; Gerin, J.L. Titration of the Infectivity of Hepatitis D Virus in Chimpanzees. J. Infect. Dis. 1987, 155, 72–78. [Google Scholar] [CrossRef]
- Polakoff, S. Transmission from mother to infant of hepatitis B virus infection. Midwives Chron. 1983, 96, 4–5. [Google Scholar]
- Lee, G.S.; Purdy, M.A.; Choi, Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life 2023, 13, 1527. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J.; Kalpana, G.; Goldberg, J.; Mason, W.; Werner, B.; Gerin, J.; Taylor, J. Structure and replication of the genome of the hepatitis delta virus. Proc. Natl. Acad. Sci. USA 1986, 83, 8774–8778. [Google Scholar] [CrossRef]
- Engelke, M.; Mills, K.; Seitz, S.; Simon, P.; Gripon, P.; Schnölzer, M.; Urban, S. Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 2006, 43, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Barrera, A.; Guerra, B.; Notvall, L.; Lanford, R.E. Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J. Virol. 2005, 79, 9786–9798. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.P.; Yeh, C.-T.; Ou, J.-H.; Lai, M. Characterization of nuclear targeting signal of hepatitis delta antigen: Nuclear transport as a protein complex. J. Virol. 1992, 66, 914–921. [Google Scholar] [CrossRef]
- Cooper, A.; Shaul, Y. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles. J. Biol. Chem. 2006, 281, 16563–16569. [Google Scholar] [CrossRef]
- Rabe, B.; Glebe, D.; Kann, M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J. Virol. 2006, 80, 5465–5473. [Google Scholar] [CrossRef]
- Kann, M.; Schmitz, A.; Rabe, B. Intracellular transport of hepatitis B virus. World J. Gastroenterol. WJG 2007, 13, 39. [Google Scholar] [CrossRef]
- Königer, C.; Wingert, I.; Marsmann, M.; Rösler, C.; Beck, J.; Nassal, M. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc. Natl. Acad. Sci. USA 2014, 111, E4244–E4253. [Google Scholar] [CrossRef]
- Sun, D.; Nassal, M. Stable HepG2-and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus. J. Hepatol. 2006, 45, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Jun-Bin, S.; Zhi, C.; Wei-Qin, N.; Jun, F. A quantitative method to detect HBV cccDNA by chimeric primer and real-time polymerase chain reaction. J. Virol. Methods 2003, 112, 45–52. [Google Scholar] [CrossRef]
- Wei, L.; Ploss, A. Mechanism of hepatitis B virus cccDNA formation. Viruses 2021, 13, 1463. [Google Scholar] [CrossRef]
- Jones, S.A.; Boregowda, R.; Spratt, T.E.; Hu, J. In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J. Virol. 2012, 86, 5134–5150. [Google Scholar] [CrossRef]
- Hu, J.; Flores, D.; Toft, D.; Wang, X.; Nguyen, D. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J. Virol. 2004, 78, 13122–13131. [Google Scholar] [CrossRef]
- Hu, J.; Anselmo, D. In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: Posttranslational activation by Hsp90. J. Virol. 2000, 74, 11447–11455. [Google Scholar] [CrossRef]
- Bertoletti, A.; Ferrari, C. Republished: Innate and adaptive immune responses in chronic hepatitis B virus infections: Towards restoration of immune control of viral infection. Postgrad. Med. J. 2013, 89, 294–304. [Google Scholar] [CrossRef]
- Lechardeur, D.; Sohn, K.; Haardt, M.; Joshi, P.; Monck, M.; Graham, R.; Beatty, B.; Squire, J.; O’brodovich, H.; Lukacs, G. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther. 1999, 6, 482–497. [Google Scholar] [CrossRef]
- Wang, X.; Le, N.; Denoth-Lippuner, A.; Barral, Y.; Kroschewski, R. Asymmetric partitioning of transfected DNA during mammalian cell division. Proc. Natl. Acad. Sci. USA 2016, 113, 7177–7182. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, E.; Pabon, J.; Xiang, K.; Park, P.; Ramanan, V.; Hoffmann, H.-H.; Schneider, W.M.; Bhatia, S.N.; de Jong, Y.P.; Shlomai, A. A robust cell culture system supporting the complete life cycle of hepatitis B virus. Sci. Rep. 2017, 7, 16616. [Google Scholar] [CrossRef] [PubMed]
- Allweiss, L.; Dandri, M. The role of cccDNA in HBV maintenance. Viruses 2017, 9, 156. [Google Scholar] [CrossRef]
- Gunther, S.; Li, B.C.; Miska, S.; Kruger, D.H.; Meisel, H.; Will, H. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J. Virol. 1995, 69, 5437–5444. [Google Scholar] [CrossRef]
- Sells, M.A.; Chen, M.-L.; Acs, G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc. Natl. Acad. Sci. USA 1987, 84, 1005–1009. [Google Scholar] [CrossRef]
- Lentz, T.B.; Loeb, D.D. Development of cell cultures that express hepatitis B virus to high levels and accumulate cccDNA. J. Virol. Methods 2010, 169, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gripon, P.; Diot, C.; Theze, N.; Fourel, I.; Loreal, O.; Brechot, C.; Guguen-Guillouzo, C. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J. Virol. 1988, 62, 4136–4143. [Google Scholar] [CrossRef]
- Levy, G.; Bomze, D.; Heinz, S.; Ramachandran, S.D.; Noerenberg, A.; Cohen, M.; Shibolet, O.; Sklan, E.; Braspenning, J.; Nahmias, Y. Long-term culture and expansion of primary human hepatocytes. Nat. Biotechnol. 2015, 33, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Kidambi, S.; Yarmush, R.S.; Novik, E.; Chao, P.; Yarmush, M.L.; Nahmias, Y. Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc. Natl. Acad. Sci. USA 2009, 106, 15714–15719. [Google Scholar] [CrossRef]
- Yoneda, M.; Hyun, J.; Jakubski, S.; Saito, S.; Nakajima, A.; Schiff, E.R.; Thomas, E. Hepatitis B virus and DNA stimulation trigger a rapid innate immune response through NF-κB. J. Immunol. 2016, 197, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Luangsay, S.; Gruffaz, M.; Isorce, N.; Testoni, B.; Michelet, M.; Faure-Dupuy, S.; Maadadi, S.; Ait-Goughoulte, M.; Parent, R.; Rivoire, M. Early inhibition of hepatocyte innate responses by hepatitis B virus. J. Hepatol. 2015, 63, 1314–1322. [Google Scholar] [CrossRef]
- Verrier, E.R.; Colpitts, C.C.; Schuster, C.; Zeisel, M.B.; Baumert, T.F. Cell culture models for the investigation of hepatitis B and D virus infection. Viruses 2016, 8, 261. [Google Scholar] [CrossRef]
- Zeisel, M.B.; Lucifora, J.; Mason, W.S.; Sureau, C.; Beck, J.; Levrero, M.; Kann, M.; Knolle, P.A.; Benkirane, M.; Durantel, D. Towards an HBV cure: State-of-the-art and unresolved questions—Report of the ANRS workshop on HBV cure. Gut 2015, 64, 1314–1326. [Google Scholar] [CrossRef]
- Bhogal, R.H.; Hodson, J.; Bartlett, D.C.; Weston, C.J.; Curbishley, S.M.; Haughton, E.; Williams, K.T.; Reynolds, G.M.; Newsome, P.N.; Adams, D.H. Isolation of primary human hepatocytes from normal and diseased liver tissue: A one hundred liver experience. PLoS ONE 2011, 6, e18222. [Google Scholar] [CrossRef]
- Allweiss, L.; Strick-Marchand, H. In-vitro and in-vivo models for hepatitis B cure research. J. Clin. Investig. Hepatol. 2020, 15, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bergkamen, H.; Untergasser, A.; Dax, A.; Vogel, H.; Büchler, P.; Klar, E.; Lehnert, T.; Friess, H.; Büchler, M.W.; Kirschfink, M. Primary human hepatocytes–a valuable tool for investigation of apoptosis and hepatitis B virus infection. J. Hepatol. 2003, 38, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Rijntjes, P.; Moshage, H.; Van Gemert, P.; De Waal, R.; Yap, S. Cryopreservation of adult human hepatocytes: The influence of deep freezing storage on the viability, cell seeding, survival, fine structures and albumin synthesis in primary cultures. J. Hepatol. 1986, 3, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Yamasaki, C.; Yanagi, A.; Yoshizane, Y.; Fujikawa, K.; Watashi, K.; Abe, H.; Wakita, T.; Hayes, C.N.; Chayama, K. Novel robust in vitro hepatitis B virus infection model using fresh human hepatocytes isolated from humanized mice. Am. J. Pathol. 2015, 185, 1275–1285. [Google Scholar] [CrossRef]
- Ulvestad, M.; Darnell, M.; Molden, E.; Ellis, E.; Åsberg, A.; Andersson, T.B. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system. J. Pharmacol. Exp. Ther. 2012, 343, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Tostões, R.M.; Leite, S.B.; Serra, M.; Jensen, J.; Björquist, P.; Carrondo, M.J.; Brito, C.; Alves, P.M. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 2012, 55, 1227–1236. [Google Scholar] [CrossRef]
- Vorrink, S.U.; Ullah, S.; Schmidt, S.; Nandania, J.; Velagapudi, V.; Beck, O.; Ingelman-Sundberg, M.; Lauschke, V.M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J. 2017, 31, 2696. [Google Scholar] [CrossRef]
- Ochiya, T.; Tsurimoto, T.; Ueda, K.; Okubo, K.; Shiozawa, M.; Matsubara, K. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes. Proc. Natl. Acad. Sci. USA 1989, 86, 1875–1879. [Google Scholar] [CrossRef]
- Lázaro, C.A.; Croager, E.J.; Mitchell, C.; Campbell, J.S.; Yu, C.; Foraker, J.; Rhim, J.A.; Yeoh, G.C.; Fausto, N. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 2003, 38, 1095–1106. [Google Scholar] [CrossRef]
- Xu, R.; Hu, P.; Li, Y.; Tian, A.; Li, J.; Zhu, C. Advances in HBV infection and replication systems in vitro. Virol. J. 2021, 18, 105. [Google Scholar] [CrossRef]
- Li, G.-Q.; Xu, W.-Z.; Wang, J.-X.; Deng, W.-W.; Li, D.; Gu, H.-X. Combination of small interfering RNA and lamivudine on inhibition of human B virus replication in HepG2. 2.15 cells. World J. Gastroenterol. WJG 2007, 13, 2324. [Google Scholar] [CrossRef]
- Indrasetiawan, P.; Aoki-Utsubo, C.; Hanafi, M.; Hartati, S.; Wahyuni, T.S.; Kameoka, M.; Yano, Y.; Hotta, H.; Hayashi, Y. Antiviral activity of cananga odorata against hepatitis B virus. Kobe J. Med. Sci. 2019, 65, E71. [Google Scholar]
- Yang, P.L.; Althage, A.; Chung, J.; Chisari, F.V. Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection. Proc. Natl. Acad. Sci. USA 2002, 99, 13825–13830. [Google Scholar] [CrossRef] [PubMed]
- Lucifora, J.; Vincent, I.E.; Berthillon, P.; Dupinay, T.; Michelet, M.; Protzer, U.; Zoulim, F.; Durantel, D.; Trepo, C.; Chemin, I. Hepatitis B virus replication in primary macaque hepatocytes: Crossing the species barrier toward a new small primate model. Hepatology 2010, 51, 1954–1960. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, J.; Hui, L.; Wang, Y.; Wang, X. Effect of fibronectin on HBV infection in primary human fetal hepatocytes in vitro. Mol. Med. Rep. 2012, 6, 1145–1149. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, F.; Li, J.; Cheng, Z.; Tian, X.; Zhi, X.; Huang, Y.; Hu, K. Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells. J. Virol. Methods 2014, 195, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Chen, Q.; Yang, L.-Y.; Li, W.-Y.; Cao, X.-B.; Wu, J.-R.; Peng, Y.-P.; Chen, M.-R. Hepatitis B virus infection and replication in primarily cultured human fetal hepatocytes. World J. Gastroenterol. WJG 2007, 13, 1027. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Hagelstein, J.; Kommerell, B.; Volkmann, M.; Schranz, P.; Zentgraf, H. In vitro experimental infection of primary human hepatocytes with hepatitis B virus. Gastroenterology 1994, 106, 664–673. [Google Scholar] [CrossRef]
- Lauschke, V.M.; Shafagh, R.Z.; Hendriks, D.F.; Ingelman-Sundberg, M. 3D primary hepatocyte culture systems for analyses of liver diseases, drug metabolism, and toxicity: Emerging culture paradigms and applications. Biotechnol. J. 2019, 14, 1800347. [Google Scholar] [CrossRef]
- Rose, K.A.; Holman, N.S.; Green, A.M.; Andersen, M.E.; LeCluyse, E.L. Co-culture of hepatocytes and Kupffer cells as an in vitro model of inflammation and drug-induced hepatotoxicity. J. Pharm. Sci. 2016, 105, 950–964. [Google Scholar] [CrossRef]
- Glebe, D.; Aliakbari, M.; Krass, P.; Knoop, E.V.; Valerius, K.P.; Gerlich, W.H. Pre-s1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J. Virol. 2003, 77, 9511–9521. [Google Scholar] [CrossRef] [PubMed]
- Baumert, T.F.; Yang, C.; Schürmann, P.; Köck, J.; Ziegler, C.; Grüllich, C.; Nassal, M.; Liang, T.J.; Blum, H.E.; Von Weizsäcker, F. Hepatitis B virus mutations associated with fulminant hepatitis induce apoptosis in primary Tupaia hepatocytes. Hepatology 2005, 41, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Nkongolo, S.; Ni, Y.; Lempp, F.A.; Kaufman, C.; Lindner, T.; Esser-Nobis, K.; Lohmann, V.; Mier, W.; Mehrle, S.; Urban, S. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J. Hepatol. 2014, 60, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Mills, K.; Weiss, T.S.; Urban, S. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 2012, 55, 373–383. [Google Scholar] [CrossRef]
- Gripon, P.; Cannie, I.; Urban, S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J. Virol. 2005, 79, 1613–1622. [Google Scholar] [CrossRef]
- Aninat, C.; Piton, A.; Glaise, D.; Le Charpentier, T.; Langouët, S.; Morel, F.; Guguen-Guillouzo, C.; Guillouzo, A. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 2006, 34, 75–83. [Google Scholar] [CrossRef]
- Marion, M.-J.; Hantz, O.; Durantel, D. The HepaRG Cell Line: Biological Properties and Relevance as a Tool for Cell Biology, Drug Metabolism, and Virology Studies. In Hepatocytes: Methods and Protocols; Methods in Molecular Biology; Guillouzo, A., Ed.; Springer: Totowa, NJ, USA, 2010; Volume 640, pp. 261–272. [Google Scholar]
- Shlomai, A.; Schwartz, R.E.; Ramanan, V.; Bhatta, A.; de Jong, Y.P.; Bhatia, S.N.; Rice, C.M. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc. Natl. Acad. Sci. USA 2014, 111, 12193–12198. [Google Scholar] [CrossRef]
- Gómez-Lechón, M.J.; Tolosa, L. Human hepatocytes derived from pluripotent stem cells: A promising cell model for drug hepatotoxicity screening. Arch. Toxicol. 2016, 90, 2049–2061. [Google Scholar] [CrossRef]
- Nie, Y.-Z.; Zheng, Y.-W.; Miyakawa, K.; Murata, S.; Zhang, R.-R.; Sekine, K.; Ueno, Y.; Takebe, T.; Wakita, T.; Ryo, A. Recapitulation of hepatitis B virus–host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine 2018, 35, 114–123. [Google Scholar] [CrossRef]
- Iwamoto, M.; Watashi, K.; Tsukuda, S.; Aly, H.H.; Fukasawa, M.; Fujimoto, A.; Suzuki, R.; Aizaki, H.; Ito, T.; Koiwai, O. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochem. Biophys. Res. Commun. 2014, 443, 808–813. [Google Scholar] [CrossRef]
- Nakabayashi, H.; Taketa, K.; Miyano, K.; Yamane, T.; Sato, J. Growth of human hepatoma cell lines with differentiated functions in chemically defined medium. Cancer Res. 1982, 42, 3858–3863. [Google Scholar]
- Chiu, J.H.; Hu, C.P.; Lui, W.Y.; Lo, S.J.; Chang, C. The formation of bile canaliculi in human hepatoma cell lines. Hepatology 1990, 11, 834–842. [Google Scholar] [CrossRef]
- Le, C.; Sirajee, R.; Steenbergen, R.; Joyce, M.A.; Addison, W.R.; Tyrrell, D.L. In vitro infection with hepatitis B virus using differentiated human serum culture of Huh7. 5-NTCP cells without requiring dimethyl sulfoxide. Viruses 2021, 13, 97. [Google Scholar] [CrossRef]
- Vondráček, J.; Souček, K.; Sheard, M.A.; Chramostová, K.; Andrysík, Z.; Hofmanová, J.; Kozubík, A. Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization. Leuk. Res. 2006, 30, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, R.H.; Joyce, M.A.; Thomas, B.S.; Jones, D.; Law, J.; Russell, R.; Houghton, M.; Tyrrell, D.L. Human serum leads to differentiation of human hepatoma cells, restoration of very-low-density lipoprotein secretion, and a 1000-fold increase in HCV Japanese fulminant hepatitis type 1 titers. Hepatology 2013, 58, 1907–1917. [Google Scholar] [CrossRef]
- Sprinzl, M.F.; Oberwinkler, H.; Schaller, H.; Protzer, U. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: Crossing the species barrier. J. Virol. 2001, 75, 5108–5118. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, X.; Hu, W.; Li, A.; Li, Y.; Huang, H.; Yan, R.; Zhang, Y.; Li, J.; Li, H.; et al. Long-term and efficient inhibition of hepatitis B virus replication by AAV8-delivered artificial microRNAs. Antivir. Res. 2022, 204, 105366. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kondo, S.; Yamasaki, M.; Matsuda, N.; Nomoto, A.; Suzuki, T.; Saito, I.; Kanegae, Y. Efficient genome replication of hepatitis B virus using adenovirus vector: A compact pregenomic RNA-expression unit. Sci. Rep. 2017, 7, 41851. [Google Scholar] [CrossRef] [PubMed]
- Mnyandu, N.Z.; Limani, S.W.; Ely, A.; Wadee, R.; Arbuthnot, P.; Maepa, M.B. Long-term inhibition of Hepatitis B virus gene expression by a primary microrna expressing ancestral adeno-associated viral vector. Virol. J. 2025, 22, 41. [Google Scholar] [CrossRef]
- Protzer, U.; Nassal, M.; Chiang, P.-W.; Kirschfink, M.; Schaller, H. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc. Natl. Acad. Sci. USA 1999, 96, 10818–10823. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.; Long, K.R.; Loprieno, M.A.; Feelixge, H.S.D.S.; Kenkel, E.J.; Liley, R.M.; Rapp, S.; Roychoudhury, P.; Nguyen, T.; Stensland, L. CRISPR-Cas9 gene editing of hepatitis B virus in chronically infected humanized mice. Mol. Ther. Methods Clin. Dev. 2021, 20, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, Y.Y.; Chen, P.J.; Watashi, K.; Wakita, T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019, 156, 338–354. [Google Scholar] [CrossRef]
- Boudewijns, R.; Ma, J.; Neyts, J.; Dallmeier, K. A novel therapeutic HBV vaccine candidate induces strong polyfunctional cytotoxic T cell responses in mice. JHEP Rep. 2021, 3, 100295. [Google Scholar] [CrossRef] [PubMed]
- Ladner, S.K.; Otto, M.J.; Barker, C.S.; Zaifert, K.; Wang, G.-H.; Guo, J.-T.; Seeger, C.; King, R.W. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: A novel system for screening potential inhibitors of HBV replication. Antimicrob. Agents Chemother. 1997, 41, 1715–1720. [Google Scholar] [CrossRef]
- Cai, D.; Wang, X.; Yan, R.; Mao, R.; Liu, Y.; Ji, C.; Cuconati, A.; Guo, H. Establishment of an inducible HBV stable cell line that expresses cccDNA-dependent epitope-tagged HBeAg for screening of cccDNA modulators. Antivir. Res. 2016, 132, 26–37. [Google Scholar] [CrossRef]
- Iwamoto, M.; Cai, D.; Sugiyama, M.; Suzuki, R.; Aizaki, H.; Ryo, A.; Ohtani, N.; Tanaka, Y.; Mizokami, M.; Wakita, T. Functional association of cellular microtubules with viral capsid assembly supports efficient hepatitis B virus replication. Sci. Rep. 2017, 7, 10620. [Google Scholar] [CrossRef]
- Gripon, P.; Rumin, S.; Urban, S.; Le Seyec, J.; Glaise, D.; Cannie, I.; Guyomard, C.; Lucas, J.; Trepo, C.; Guguen-Guillouzo, C. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 2002, 99, 15655–15660. [Google Scholar] [CrossRef]
- Hantz, O.; Parent, R.; Durantel, D.; Gripon, P.; Guguen-Guillouzo, C.; Zoulim, F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J. Gen. Virol. 2009, 90, 127–135. [Google Scholar] [CrossRef]
- Mayati, A.; Moreau, A.; Le Vée, M.; Bruyère, A.; Jouan, E.; Denizot, C.; Parmentier, Y.; Fardel, O. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci. Rep. 2018, 8, 16115. [Google Scholar] [CrossRef]
- Xiang, C.; Du, Y.; Meng, G.; Soon Yi, L.; Sun, S.; Song, N.; Zhang, X.; Xiao, Y.; Wang, J.; Yi, Z. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019, 364, 399–402. [Google Scholar] [CrossRef]
- Boess, F.; Kamber, M.; Romer, S.; Gasser, R.; Muller, D.; Albertini, S.; Suter, L. Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: Possible implications for toxicogenomics use of in vitro systems. Toxicol. Sci. 2003, 73, 386–402. [Google Scholar] [CrossRef]
- Rodríguez-Antona, C.; Donato, M.T.; Boobis, A.; Edwards, R.J.; Watts, P.S.; Castell, J.V.; Gómez-Lechón, M.-J. Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: Molecular mechanisms that determine lower expression in cultured cells. Xenobiotica 2002, 32, 505–520. [Google Scholar] [CrossRef]
- Schyschka, L.; Sánchez, J.M.; Wang, Z.; Burkhardt, B.; Müller-Vieira, U.; Zeilinger, K.; Bachmann, A.; Nadalin, S.; Damm, G.; Nussler, A. Hepatic 3D cultures but not 2D cultures preserve specific transporter activity for acetaminophen-induced hepatotoxicity. Arch. Toxicol. 2013, 87, 1581–1593. [Google Scholar] [CrossRef]
- Long-Term Culture and Coculture of Primary Rat and Human Hepatocytes. In Epithelial Cell Culture Protocols, 2nd ed.; Randell, S.H., Fulcher, M.L., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 287–302. [Google Scholar]
- Kukla, D.A.; Crampton, A.L.; Wood, D.K.; Khetani, S.R. Microscale collagen and fibroblast interactions enhance primary human hepatocyte functions in three-dimensional models. Gene Expr. 2020, 20, 1. [Google Scholar] [CrossRef]
- Vinken, M.; Decrock, E.; Doktorova, T.; Ramboer, E.; De Vuyst, E.; Vanhaecke, T.; Leybaert, L.; Rogiers, V. Characterization of spontaneous cell death in monolayer cultures of primary hepatocytes. Arch. Toxicol. 2011, 85, 1589–1596. [Google Scholar] [CrossRef]
- Ullah, I.; Kim, Y.; Lim, M.; Oh, K.B.; Hwang, S.; Shin, Y.; Kim, Y.; Im, G.-S.; Hur, T.-Y.; Ock, S.A. In vitro 3-D culture demonstrates incompetence in improving maintenance ability of primary hepatocytes. Anim. Cells Syst. 2017, 21, 332–340. [Google Scholar] [CrossRef]
- Delaney IV, W.E.; Miller, T.G.; Isom, H.C. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (−)-β-2′, 3′-dideoxy-3′-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob. Agents Chemother. 1999, 43, 2017–2026. [Google Scholar] [CrossRef]
- Delaney, W.E.; Isom, H.C. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 1998, 28, 1134–1146. [Google Scholar] [CrossRef]
- Abdelhamed, A.M.; Kelley, C.M.; Miller, T.G.; Furman, P.A.; Isom, H.C. Rebound of hepatitis B virus replication in HepG2 cells after cessation of antiviral treatment. J. Virol. 2002, 76, 8148–8160. [Google Scholar] [CrossRef]
- Hofmann, C.; Sandig, V.; Jennings, G.; Rudolph, M.; Schlag, P.; Strauss, M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 1995, 92, 10099–10103. [Google Scholar] [CrossRef]
- Hofmann, C.; Strauss, M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther. 1998, 5, 531–536. [Google Scholar] [CrossRef]
- Atienzar, F.A.; Novik, E.I.; Gerets, H.H.; Parekh, A.; Delatour, C.; Cardenas, A.; MacDonald, J.; Yarmush, M.L.; Dhalluin, S. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol. Appl. Pharmacol. 2014, 275, 44–61. [Google Scholar] [CrossRef]
- Bonn, B.; Svanberg, P.; Janefeldt, A.; Hultman, I.; Grime, K. Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: Comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and HepaRG. Drug Metab. Dispos. 2016, 44, 527–533. [Google Scholar] [CrossRef]
- Winer, B.Y.; Huang, T.S.; Pludwinski, E.; Heller, B.; Wojcik, F.; Lipkowitz, G.E.; Parekh, A.; Cho, C.; Shrirao, A.; Muir, T.W. Long-term hepatitis B infection in a scalable hepatic co-culture system. Nat. Commun. 2017, 8, 125. [Google Scholar] [CrossRef]
- Walter, E.; Keist, R.; Niederöst, B.; Pult, I.; Blum, H.E. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 1996, 24, 1–5. [Google Scholar] [CrossRef]
- Schieck, A.; Schulze, A.; Gähler, C.; Müller, T.; Haberkorn, U.; Alexandrov, A.; Urban, S.; Mier, W. Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology 2013, 58, 43–53. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Sakurai, F.; Mitani, S.; Yamamoto, T.; Takayama, K.; Tachibana, M.; Watashi, K.; Wakita, T.; Iijima, S.; Tanaka, Y.; Mizuguchi, H. Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci. Rep. 2017, 7, 45698. [Google Scholar] [CrossRef]
- Jo, E.; Kim, H.; König, A.; Yang, J.; Yoon, S.K.; Windisch, M.P. Determination of infectious hepatitis B virus particles by an end-point dilution assay identifies a novel class of inhibitors. Antivir. Res. 2021, 196, 105195. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, M.A.; Kuipery, A.; Mosa, A.I.; Gehring, A.J.; Feld, J.J. HepG2-NTCP Subclones Exhibiting High Susceptibility to Hepatitis B Virus Infection. Viruses 2022, 14, 1800. [Google Scholar] [CrossRef] [PubMed]
- Hagenbuch, B.; Dawson, P. The sodium bile salt cotransport family SLC10. Pflügers Arch. 2004, 447, 566–570. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Y.; Sui, J.; Li, W. NTCP opens the door for hepatitis B virus infection. Antivir. Res. 2015, 121, 24–30. [Google Scholar] [CrossRef]
- Anwer, M.S.; Stieger, B. Sodium-dependent bile salt transporters of the SLC10A transporter family: More than solute transporters. Pflügers Arch. Eur. J. Physiol. 2014, 466, 77–89. [Google Scholar] [CrossRef]
- Elinger, S. HBV: Stowaway of NTCP. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 661–663. [Google Scholar] [CrossRef]
- Tsukuda, S.; Watashi, K.; Iwamoto, M.; Suzuki, R.; Aizaki, H.; Okada, M.; Sugiyama, M.; Kojima, S.; Tanaka, Y.; Mizokami, M. Dysregulation of retinoic acid receptor diminishes hepatocyte permissiveness to hepatitis B virus infection through modulation of sodium taurocholate cotransporting polypeptide (NTCP) expression. J. Biol. Chem. 2015, 290, 5673–5684. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Cai, D.; Liu, Y.; Cuconati, A.; Guo, H. Spinoculation enhances HBV infection in NTCP-reconstituted hepatocytes. PLoS ONE 2015, 10, e0129889. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhuang, Q.; Wang, Y.; Zhang, T.; Zhao, J.; Zhang, Y.; Zhang, J.; Lin, Y.; Yuan, Q.; Xia, N. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell. Mol. Immunol. 2014, 11, 175–183. [Google Scholar] [CrossRef]
- Schulze, A.; Gripon, P.; Urban, S. Hepatitis B virus infection initiates with a large surface protein–dependent binding to heparan sulfate proteoglycans. Hepatology 2007, 46, 1759–1768. [Google Scholar] [CrossRef]
- Umetsu, T.; Inoue, J.; Kogure, T.; Kakazu, E.; Ninomiya, M.; Iwata, T.; Takai, S.; Nakamura, T.; Sano, A.; Shimosegawa, T. Inhibitory effect of silibinin on hepatitis B virus entry. Biochem. Biophys. Rep. 2018, 14, 20–25. [Google Scholar] [CrossRef]
- Sibiya, T.; Ghazi, T.; Mohan, J.; Nagiah, S.; Chuturgoon, A.A. Spirulina platensis ameliorates oxidative stress associated with antiretroviral drugs in hepg2 cells. Plants 2022, 11, 3143. [Google Scholar] [CrossRef]
- Sibiya, T.; Ghazi, T.; Mohan, J.; Nagiah, S.; Chuturgoon, A.A. Spirulina platensis mitigates the inhibition of selected miRNAs that promote inflammation in HAART-treated HepG2 cells. Plants 2022, 12, 119. [Google Scholar] [CrossRef]
- Xin, X.-m.; Li, G.-q.; Guan, X.-r.; Li, D.; Xu, W.-z.; Jin, Y.-Y.; Gu, H. Combination therapy of siRNAs mediates greater suppression on hepatitis B virus cccDNA in HepG2. 2.15 cell. Hepato-Gastroenterol. 2008, 55, 2178–2183. [Google Scholar]
- Li, X.; Xu, Z.; Mitra, B.; Wang, M.; Guo, H.; Feng, Z. Elevated NTCP expression by an iPSC-derived human hepatocyte maintenance medium enhances HBV infection in NTCP-reconstituted HepG2 cells. Cell Biosci. 2021, 11, 123. [Google Scholar] [CrossRef]
- Li, W.; Urban, S. Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. J. Hepatol. 2016, 64, S32–S40. [Google Scholar] [CrossRef] [PubMed]
- Liguori, M.J.; Blomme, E.A.; Waring, J.F. Trovafloxacin-Induced Gene Expression Changes in Liver-Derived In Vitro Systems: Comparison of Primary Human Hepatocytes to HepG2 Cells. Drug Metab. Dispos. 2008, 36, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Coulouarn, C.; Factor, V.M.; Thorgeirsson, S.S. Loss of miR-122 Expression in Liver Cancer Correlates with Suppression of the Hepatic Phenotype and Gain of Metastatic Properties. Oncogene 2009, 28, 3526–3536. [Google Scholar] [CrossRef]
- Song, Y.M.; Song, S.-O.; Jung, Y.-K.; Kang, E.-S.; Cha, B.S.; Lee, H.C.; Lee, B.-W. Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 2012, 8, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Mamidi, M.K.; Das, A.K.; Bhonde, R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. 2012, 86, 651–661. [Google Scholar] [CrossRef]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef]
- König, A.; Yang, J.; Jo, E.; Park, K.H.P.; Kim, H.; Than, T.T.; Song, X.; Qi, X.; Dai, X.; Park, S. Efficient long-term amplification of hepatitis B virus isolates after infection of slow proliferating HepG2-NTCP cells. J. Hepatol. 2019, 71, 289–300. [Google Scholar] [CrossRef]
- Marlet, J.; Lier, C.; Roch, E.; Maugey, M.; Moreau, A.; Combe, B.; Lefeuvre, S.; d’Alteroche, L.; Barbereau, D.; Causse, X. Revisiting HBV resistance to entecavir with a phenotypic approach. Antivir. Res. 2020, 181, 104869. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Liu, Y.; Luo, D.; Si, L.; Huang, B.; Wang, J.; Li, X.; Cheng, F.; Xu, D.; Duan, C. Hepatitis B virus mutation pattern rtA181S+ T184I+ M204I may contribute to multidrug resistance in clinical practice: Analysis of a large cohort of Chinese patients. Antivir. Res. 2020, 180, 104852. [Google Scholar] [CrossRef]
- Mokaya, J.; McNaughton, A.L.; Bester, P.A.; Goedhals, D.; Barnes, E.; Marsden, B.D.; Matthews, P.C. Hepatitis B virus resistance to tenofovir: Fact or fiction? A systematic literature review and structural analysis of drug resistance mechanisms. Wellcome Open Res. 2020, 5, 151. [Google Scholar] [CrossRef]
- Lok, A.S.; Zoulim, F.; Dusheiko, G.; Ghany, M.G. Hepatitis B cure: From discovery to regulatory approval. Hepatology 2017, 66, 1296–1313. [Google Scholar] [CrossRef]
- Dawson, P.A.; Lan, T.; Rao, A. Bile acid transporters. J. Lipid Res. 2009, 50, 2340–2357. [Google Scholar] [CrossRef] [PubMed]
- Volz, T.; Allweiss, L.; Ben, M.M.; Warlich, M.; Lohse, A.W.; Pollok, J.M.; Alexandrov, A.; Urban, S.; Petersen, J.; Lütgehetmann, M.; et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J. Hepatol. 2013, 58, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Blank, A.; Markert, C.; Hohmann, N.; Carls, A.; Mikus, G.; Lehr, T.; Alexandrov, A.; Haag, M.; Schwab, M.; Urban, S.; et al. Myrcludex B: A first-in-human clinical study with a first-in-class hepatitis B and hepatitis D virus entry inhibitor. J. Hepatol. 2016, 65, 483–489. [Google Scholar] [CrossRef]
- Lucifora, J.; Esser, K.; Protzer, U. Ezetimibe blocks hepatitis B virus infection after virus uptake into hepatocytes. Antivir. Res. 2013, 97, 195–197. [Google Scholar] [CrossRef]
- Shimura, S.; Watashi, K.; Fukano, K.; Peel, M.; Sluder, A.; Kawai, F.; Iwamoto, M.; Tsukuda, S.; Takeuchi, J.S.; Miyake, T. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J. Hepatol. 2017, 66, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-j.; Hu, W.; Zhang, T.-y.; Mao, Y.-y.; Liu, N.-n.; Wang, S.-q. Irbesartan, an FDA approved drug for hypertension and diabetic nephropathy, is a potent inhibitor for hepatitis B virus entry by disturbing Na+-dependent taurocholate cotransporting polypeptide activity. Antivir. Res. 2015, 120, 140–146. [Google Scholar] [CrossRef]
- Passioura, T.; Watashi, K.; Fukano, K.; Shimura, S.; Saso, W.; Morishita, R.; Ogasawara, Y.; Tanaka, Y.; Mizokami, M.; Sureau, C. De novo macrocyclic peptide inhibitors of hepatitis B virus cellular entry. Cell Chem. Biol. 2018, 25, 906–915. e905. [Google Scholar] [CrossRef]
- Huang, H.-C.; Tao, M.-H.; Hung, T.-M.; Chen, J.-C.; Lin, Z.-J.; Huang, C. (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antivir. Res. 2014, 111, 100–111. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Ikeda, S.; Uwai, K.; Taguchi, R.; Chayama, K.; Sakaguchi, T.; Narita, R.; Yao, W.-L.; Takeuchi, F.; Otakaki, Y. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS ONE 2018, 13, e0197664. [Google Scholar] [CrossRef]
- Jo, E.; Ryu, D.-K.; König, A.; Park, S.; Cho, Y.; Park, S.-H.; Kim, T.-H.; Yoon, S.K.; Ryu, W.-S.; Cechetto, J. Identification and characterization of a novel hepatitis B virus pregenomic RNA encapsidation inhibitor. Antivir. Res. 2020, 175, 104709. [Google Scholar] [CrossRef] [PubMed]
- Bazzoli, C.; Jullien, V.; Tiec, C.L.; Rey, E.; Mentré, F.; Taburet, A.-M. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug action. Clin. Pharmacokinet. 2010, 49, 17–45. [Google Scholar] [CrossRef]
- Higashi-Kuwata, N.; Hayashi, S.; Kumamoto, H.; Ogata-Aoki, H.; Das, D.; Venzon, D.; Hattori, S.-i.; Bulut, H.; Hashimoto, M.; Otagiri, M. Identification of a novel long-acting 4’-modified nucleoside reverse transcriptase inhibitor against HBV. J. Hepatol. 2021, 74, 1075–1086. [Google Scholar] [CrossRef]
- Zhang, P.; Zhai, S.; Chang, J.; Guo, J.-T. In Vitro Anti-hepatitis B Virus Activity of 2′, 3′-Dideoxyguanosine. Virol. Sin. 2018, 33, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Watashi, K.; Fukano, K.; Tsukuda, S.; Wakae, K.; Aizaki, H.; Muramatsu, M.; Wakita, T.; Toyoda, T. Non-nucleoside hepatitis B virus polymerase inhibitors identified by an in vitro polymerase elongation assay. J. Gastroenterol. 2020, 55, 441–452. [Google Scholar] [CrossRef]
- Qiu, J.; Gong, Q.; Gao, J.; Chen, W.; Zhang, Y.; Gu, X.; Tang, D. Design, synthesis and evaluation of novel phenyl propionamide derivatives as non-nucleoside hepatitis B virus inhibitors. Eur. J. Med. Chem. 2018, 144, 424–434. [Google Scholar] [CrossRef]
- Parvez, M.K.; Rehman, M.T.; Alam, P.; Al-Dosari, M.S.; Alqasoumi, S.I.; Alajmi, M.F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm. J. 2019, 27, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ohsaki, E.; Ueda, K. Screening and evaluation of novel compounds against hepatitis B virus polymerase using highly purified reverse transcriptase domain. Viruses 2020, 12, 840. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhao, J.; Zhang, Y.; Liu, Q.; Tian, C.; Zhang, Z.; Liu, J.; Wang, X. 2-Arylthio-5-iodo pyrimidine derivatives as non-nucleoside HBV polymerase inhibitors. Bioorganic Med. Chem. 2018, 26, 1573–1578. [Google Scholar] [CrossRef]
- Himmel, D.M.; Maegley, K.A.; Pauly, T.A.; Bauman, J.D.; Das, K.; Dharia, C.; Clark, A.D.; Ryan, K.; Hickey, M.J.; Love, R.A. Structure of HIV-1 reverse transcriptase with the inhibitor β-thujaplicinol bound at the RNase H active site. Structure 2009, 17, 1625–1635. [Google Scholar] [CrossRef]
- Fullagar, J.L.; Garner, A.L.; Struss, A.K.; Day, J.A.; Martin, D.P.; Yu, J.; Cai, X.; Janda, K.D.; Cohen, S.M. Antagonism of a zinc metalloprotease using a unique metal-chelating scaffold: Tropolones as inhibitors of P. aeruginosa elastase. Chem. Commun. 2013, 49, 3197–3199. [Google Scholar] [CrossRef]
- Hirsch, D.R.; Cox, G.; D’Erasmo, M.P.; Shakya, T.; Meck, C.; Mohd, N.; Wright, G.D.; Murelli, R.P. Inhibition of the ANT (2″)-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorg. Med. Chem. Lett. 2014, 24, 4943–4947. [Google Scholar] [CrossRef]
- Tavis, J.E.; Cheng, X.; Hu, Y.; Totten, M.; Cao, F.; Michailidis, E.; Aurora, R.; Meyers, M.J.; Jacobsen, E.J.; Parniak, M.A. The hepatitis B virus ribonuclease H is sensitive to inhibitors of the human immunodeficiency virus ribonuclease H and integrase enzymes. PLoS Pathog. 2013, 9, e1003125. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, X.; Cao, F.; Huang, A.; Tavis, J.E. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity. Antivir. Res. 2013, 99, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Lomonosova, E.; Cheng, X.; Moran, E.A.; Meyers, M.J.; Le Grice, S.F.; Thomas, C.J.; Jiang, J.-k.; Meck, C.; Hirsch, D.R. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity. Antimicrob. Agents Chemother. 2015, 59, 1070–1079. [Google Scholar] [CrossRef]
- Huber, A.D.; Michailidis, E.; Tang, J.; Puray-Chavez, M.N.; Boftsi, M.; Wolf, J.J.; Boschert, K.N.; Sheridan, M.A.; Leslie, M.D.; Kirby, K.A. 3-Hydroxypyrimidine-2, 4-diones as novel hepatitis B virus antivirals targeting the viral ribonuclease H. Antimicrob. Agents Chemother. 2017, 61, e00245-17. [Google Scholar] [CrossRef] [PubMed]
- Lomonosova, E.; Zlotnick, A.; Tavis, J.E. Synergistic interactions between hepatitis B virus RNase H antagonists and other inhibitors. Antimicrob. Agents Chemother. 2017, 61, e02441-16. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Li, Q.; Woodson, M.E.; Gasonoo, M.; Meyers, M.J.; Tavis, J.E. Efficient inhibition of hepatitis B virus (HBV) replication and cccDNA formation by HBV ribonuclease H inhibitors during infection. Antimicrob. Agents Chemother. 2021, 65, e0146021. [Google Scholar] [CrossRef]
- Ledesma, F.C.; El Khamisy, S.F.; Zuma, M.C.; Osborn, K.; Caldecott, K.W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 2009, 461, 674–678. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Niklasch, M.; Liu, T.; Wang, Y.; Shi, B.; Yuan, W.; Baumert, T.F.; Yuan, Z.; Tong, S.; Nassal, M. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J. Hepatol. 2020, 72, 865–876. [Google Scholar] [CrossRef]
- Seo, H.W.; Seo, J.P.; Jung, G. Heat shock protein 70 and heat shock protein 90 synergistically increase hepatitis B viral capsid assembly. Biochem. Biophys. Res. Commun. 2018, 503, 2892–2898. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Beck, J.r.; Nassal, M. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to ε RNA binding. J. Virol. 2007, 81, 13354–13364. [Google Scholar] [CrossRef]
- Beck, J.; Nassal, M. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J. Biol. Chem. 2003, 278, 36128–36138. [Google Scholar] [CrossRef]
- Lubkowska, A.; Pluta, W.; Strońska, A.; Lalko, A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int. J. Mol. Sci. 2021, 22, 9366. [Google Scholar] [CrossRef]
- Yedavalli, V.S.; Neuveut, C.; Chi, Y.-h.; Kleiman, L.; Jeang, K.-T. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004, 119, 381–392. [Google Scholar] [CrossRef]
- Ogunnaike, M.; Das, S.; Raut, S.S.; Sultana, A.; Nayan, M.U.; Ganesan, M.; Edagwa, B.J.; Osna, N.A.; Poluektova, L.Y. Chronic hepatitis B infection: New approaches towards cure. Biomolecules 2023, 13, 1208. [Google Scholar] [CrossRef]
- Lam, A.M.; Dugyala, R.R.; Sheraz, M.; Liu, F.; Thi, E.P.; Graves, I.E.; Cuconati, A.; Steuer, H.M.; Ardzinski, A.; Overholt, N. Preclinical antiviral and safety profiling of the HBV RNA destabilizer AB-161. Viruses 2024, 16, 323. [Google Scholar] [CrossRef]
- Berke, J.M.; Dehertogh, P.; Vergauwen, K.; Van Damme, E.; Mostmans, W.; Vandyck, K.; Pauwels, F. Capsid assembly modulators have a dual mechanism of action in primary human hepatocytes infected with hepatitis B virus. Antimicrob. Agents Chemother. 2017, 61, e00560-17. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Guerra, A.-R.; Carreira, L.; Ferrer, J.-Á.; Gutiérrez, M.-L.; Fernandez-Rodriguez, C.M. Upcoming pharmacological developments in chronic hepatitis B: Can we glimpse a cure on the horizon? BMC Gastroenterol. 2017, 17, 168. [Google Scholar] [CrossRef] [PubMed]
- Allweiss, L.; Dandri, M. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J. Hepatol. 2016, 64, S17–S31. [Google Scholar] [CrossRef]
- Lucifora, J.; Xia, Y.; Reisinger, F.; Zhang, K.; Stadler, D.; Cheng, X.; Sprinzl, M.F.; Koppensteiner, H.; Makowska, Z.; Volz, T. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 2014, 343, 1221–1228. [Google Scholar] [CrossRef]
- Krooss, S.A.; Dai, Z.; Schmidt, F.; Rovai, A.; Fakhiri, J.; Dhingra, A.; Yuan, Q.; Yang, T.; Balakrishnan, A.; Steinbrück, L.; et al. Ex Vivo/In vivo Gene Editing in Hepatocytes Using “All-in-One” CRISPR-Adeno-Associated Virus Vectors with a Self-Linearizing Repair Template. iScience 2020, 23, 100764. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Gao, Z.; Xu, G.; Peng, B.; Liu, C.; Yan, H.; Yao, Q.; Sun, G.; Liu, Y.; Tang, D. DNA polymerase κ is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 2016, 12, e1005893. [Google Scholar] [CrossRef]
Cell Line | Advantages | Shortcomings | HBV Infection Rate and Application of the Models |
---|---|---|---|
HepG2.2.15 cells | cccDNA accumulation. Continuous HBV gene expression and replication. | Reduced viral replication. Unstable antigen expression. Virion production from integrated DNA. | Antiviral compound screening and assessment, etc. [80]. |
HepAD38 (EF9 and EFS19) cells | These cells differentiate rapidly and produce significant quantities of viral particles. Importantly, they also allow for the accumulation of covalently closed circular DNA (cccDNA), a crucial aspect of the HBV life cycle. | Virions are created from integrated DNA and represent an incomplete viral life cycle. | The model is useful for studying HBV infection, cccDNA persistence, and exploring antiviral treatment strategies in a controlled lab setting. A possible source of virions produced from tissue culture [81]. |
Ad-HBV1.3-systems | No species barrier. Effective HBV expression. Controllable HBV expression and mutation. Direct measurement of the efficacy of transfection and infection (integrated green fluorescent protein gene). | Lacking the normal infection stage of HBV. | Used to create acute hepatitis B infection models in animals [82]. |
HBV baculovirus system | Easy detection of riboprotein-bound HBV DNA. High HBV replication level. Formation of infectious viruses and a detectable intracellular cccDNA pool. | Nonreceptor-mediated entry. Gene transfer is restricted to certain species. Missing HBV natural infection stage. | Quantify the effect of antiviral agents on nuclear HBV DNA. Used for studying the resistance of HBV to nucleoside analogues [83]. |
Primary human hepatocytes (PHH) | Supports the full life cycle of HBV infections: Capable of replicating every stage of infection, from viral entry and replication to release. Includes a variety of liver-specific host factors: These hepatocyte-specific components ensure that the model closely mimics the natural infection process in human liver cells. Has a fully functional innate immune system: This feature allows the system to simulate the body’s initial immune response to the viral infections, facilitating the study of immune evasion and antiviral defenses. | Scarcity of high-quality donors and limited cell lifespan. Varying degrees of susceptibility to HBV infections. Loss of functional characteristics following plating. Challenges in maintaining appropriate culture conditions. | Assessment of drug candidates’ toxicity, drug–drug interactions, drug transporter activity, and metabolism in vitro. |
Human fetal hepatocytes | Phenotypically and biologically functionally close to primary adult human hepatocytes. | Low infection efficiency. Short infection time. Limited availability. Large donor–donor variations. | HBV infection rate 12–90% [77,84]. Co-culturing with hepatic non-parenchymal cells and subsequent addition of 2% DMSO leads to the formation of hepatocyte islands with prolonged phenotypic maintenance [85]. The early events in viral entry into cells as well as viral replication [86]. |
Adult human hepatocytes | The gold standard host cell to HBV infection experiments. Closest to the physiological characteristics of hepatocytes in vivo. Close to the natural process of infection. | Limited life cycle. Unpassable culture. Phenotypically unstable in vitro. Rapidly lose permissiveness for HBV Infection. Large donor–donor variations. | HBV infection rate 20–100% [71,87]. Used for studying the process of HBV infection [62,87]. Used for studying apoptosis [71]. Preparation of 3D primary hepatocyte culture system for analyses of liver diseases, drug metabolism, and toxicity [75,88]. |
Co-culture system | Test the utility of various direct-acting antivirals (DAAs) and putative host-targeting antivirals (HTAs). Assessing preclinically the efficacy of other entry inhibitors and possibly (vaccine-induced) neutralizing antibodies. | Wide variability between donors in terms of HBV permissiveness. | Inflammation and drug-induced hepatotoxicity [89]. |
Primary Tupaia hepatocytes | The only species susceptible to HBV infection besides humans and chimpanzees. | Expensive. | HBV infection rate > 70% [90]. Used for in vitro as well as in vivo infection experiments [91]. HBV-specific receptor identification [92]. |
HepaRG cells | Preserve the specific functional properties of hepatocytes. Support the complete HBV life cycle. Produce HBV cccDNA. Involved in liver functions. Produces transcripts for a variety of nuclear receptors. | Strict culture conditions. Exhibits low infection efficiency. Requires cellular differentiation. Limited ability for cell-to-cell transmission. | HBV infection rate < 30% [92,93]. HBV molecular mechanism and screening, evaluation of anti-HBV drugs, cccDNA spread, etc. [94]. Drug metabolism and toxicity [95,96]. |
In vitro systems based on induced pluripotent stem (iPS) cell-derived human hepatocytes | Exhibit characteristics closely resembling those of healthy liver cells capable of supporting the entire viral replication cycle. Possess a fully functional immune response system. | Complex procedure. | HBV infection rates can reach as high as 25% [97]. Screening for drug-induced hepatotoxicity [98]. The HBV virus’s life cycle and the damage it causes to the liver [99]. |
NTCP overexpressing hepatoma cell lines | Supporting the full life cycle of a virus. Flexibility and ease of use. | The cells exhibit low sensitivity to infection by HBV derived from serum. Achieving infection requires a very high multiplicity of infection (MOI). After infection occurs, there is minimal viral spread to other cells. | HBV infection rates can reach as high as 50% [100]. Screen antiviral drugs on a large scale, with a focus on targeting the NTCP receptor, which is essential for HBV entry into liver cells [81]. |
Huh7-NTCP | Enhanced infection efficiency. | Only partially replicate the behavior of normal hepatocytes due to inadequate polarization. Lacks detectable levels of the receptor. | Useful for studies of the HBV virus. |
HepG2-NTCP | Easily accessible. Consistent reproducibility. Strong viral infection. | Incomplete mimicry of normal hepatocyte function. Reduced viral replication and infection efficiency. Necessitates additional use of PEG and DMSO for optimal results. | HBV studies. In vitro evaluation of metabolism. |
HepG2-NTCP sec+ | Complete HBV life cycle support. Sustained viral propagation. | Requires a high viral titer for effective inoculation. Needs PEG to enhance viral infectivity. | HBV studies. In vitro evaluation of metabolism. |
The 3D culture | Preserves cell morphology. No PEG or DMSO requirement. | Does not fully replicate the natural hepatic environment or maintain liver-specific functions. | HBV studies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibiya, T.; Xaba, L.; Mthethwa, L.; Chuturgoon, A.A.; Msomi, N. The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility. Viruses 2025, 17, 1057. https://doi.org/10.3390/v17081057
Sibiya T, Xaba L, Mthethwa L, Chuturgoon AA, Msomi N. The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility. Viruses. 2025; 17(8):1057. https://doi.org/10.3390/v17081057
Chicago/Turabian StyleSibiya, Thabani, Lunga Xaba, Lulama Mthethwa, Anil A. Chuturgoon, and Nokukhanya Msomi. 2025. "The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility" Viruses 17, no. 8: 1057. https://doi.org/10.3390/v17081057
APA StyleSibiya, T., Xaba, L., Mthethwa, L., Chuturgoon, A. A., & Msomi, N. (2025). The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility. Viruses, 17(8), 1057. https://doi.org/10.3390/v17081057