Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Blood Samples
2.2. Cells
2.3. Viruses
2.4. Detection of Dengue and Chikungunya Viruses in Sera Patients
2.5. Detection of Anti-Dengue and Anti-Chikungunya IgM and IgG Antibodies by Capture ELISA in Sera Patients
2.6. Induction of Anti-DENV2 and Anti-CHIKV IgG Antibodies by Inoculation of CHIKV and DENV2 in BALB/c Mice
2.7. Anti-DENV2 and Anti-CHIKV IgG Antibody Mouse Titration by ELISA
2.8. Plaque Reduction Neutralization Test (PRNT)
2.9. Calculations and Statistical Analysis
3. Results
3.1. Neutralizing Capacity of Anti-Dengue and Anti-Chikungunya IgG Antibodies from Patients of the State of Veracruz, Mexico
3.2. Induction of Anti-CHIKV and Anti-DENV2 IgG Antibodies in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
3.3. Determination of the Anti-CHIKV and Anti-DENV2 IgG Antibody Titer in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
3.4. Determination of Neutralizing Capacity of IgG Antibodies in Sera of BALB/c Mice Inoculated with DENV2 and CHIKV
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef] [PubMed]
- de Lima Cavalcanti, T.Y.V.; Pereira, M.R.; de Paula, S.O.; Franca, R.F.O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses 2022, 14, 969. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.A.; Powers, A.M.; Pesik, N.; Cohen, N.J.; Staples, J.E. Nowcasting the spread of chikungunya virus in the Americas. PLoS ONE 2014, 9, e104915. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Govea, M.A.; Zamudio-Osuna, M.d.J.; Murillo, K.d.C.T.; Ponce, G.; de la O Cavazos, M.E.; Tavitas-Aguilar, M.I.; Flores-Suárez, A.E.; Villarreal-Perez, J.Z.; Rodriguez-Sanchez, I.P. Chikungunya fever in patients from northeastern Mexico. Southwest. Entomol. 2017, 42, 43–52. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner RCJr Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; Shirude, S.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Gromowski, G.D.; Li, L.; Barrett, A.D. Characterization of a dengue type-specific epitope on dengue 3 virus envelope protein domain III. J. Gen. Virol. 2010, 91 Pt 9, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Wahala, W.M.; Kraus, A.A.; Haymore, L.B.; Accavitti-Loper, M.A.; de Silva, A.M. Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody. Virology 2009, 392, 103–113. [Google Scholar] [CrossRef]
- Flipse, J.; Wilschut, J.; Smit, J.M. Molecular mechanisms involved in antibody-dependent enhancement of dengue virus infection in humans. Traffic 2013, 14, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Dhama, N.; Gupta, R.D. Dengue virus neutralizing antibody: A review of targets, cross-reactivity, and antibody-dependent enhancement. Front. Immunol. 2023, 14, 1200195. [Google Scholar] [CrossRef] [PubMed]
- Van Leur, S.W.; Heunis, T.; Munnur, D.; Sanyal, S. Pathogenesis and virulence of flavivirus infections. Virulence 2021, 12, 2814–2838. [Google Scholar] [CrossRef] [PubMed]
- Endale, A.; Medhin, G.; Darfiro, K.; Kebede, N.; Legesse, M. Magnitude of Antibody Cross-Reactivity in Medically Important Mosquito-Borne Flaviviruses: A Systematic Review. Infect. Drug Resist. 2021, 14, 4291–4299. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.-W.; Pok, K.-Y.; Eng, K.E.; Tan, L.-K.; Kaur, S.; Lee, W.W.L.; Leo, Y.-S.; Ng, L.-C.; Ng, L.F.P. Sero-prevalence and cross-reactivity of chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLoS Negl. Trop. Dis. 2015, 9, e3445. [Google Scholar] [CrossRef] [PubMed]
- Rosso, F.; Pacheco, R.; Rodriguez, S.; Bautista, D. Co-infection by chikungunya virus (CHIK-V) and dengue virus (DEN-V) during a recent outbreak in Cali. Colombia: Report of a fatal case. Rev. Chilena Infectol. 2016, 33, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Saswat, T.; Kumar, A.; Kumar, S.; Mamidi, P.; Muduli, S.; Debata, N.K.; Pal, N.S.; Pratheek, B.; Chattopadhyay, S. High rates of co-infection of dengue and chikungunya virus in Odisha and Maharashtra, India during 2013. Infect. Genet. Evol. 2015, 35, 134–141. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- González-Flores, A.M.; Salas-Benito, M.; Rosales-García, V.H.; Zárate-Segura, P.B.; Del Ángel, R.M.; De Nova-Ocampo, M.A.; Salas-Benito, J.S. Characterization of Viral Interference in Aedes albopictus C6/36 Cells Persistently Infected with Dengue Virus 2. Pathogens 2023, 12, 1135. [Google Scholar] [CrossRef]
- Díaz-Quiñonez, J.A.; Ortiz-Alcántara, J.; Fragoso-Fonseca, D.E.; Garcés-Ayala, F.; Escobar-Escamilla, N.; Vázquez-Pichardo, M.; Núñez-León, A.; Torres-Rodríguez, M.d.l.L.; Torres-Longoria, B.; López-Martínez, I.; et al. Complete genome sequences of chikungunya virus strains isolated in Mexico: First detection of imported and autochthonous cases. Genome Announc. 2015, 3, e00300-15. [Google Scholar] [CrossRef] [PubMed]
- Galan-Huerta, K.A.; Zomosa-Signoret, V.C.; Vidaltamayo, R.; Caballero-Sosa, S.; Fernández-Salas, I.; Ramos-Jiménez, J.; Rivas-Estilla, A.M. Genetic Variability of Chikungunya Virus in Southern Mexico. Viruses 2019, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.J.; Liao, T.L.; Shu, P.Y.; Huang, J.H.; Gubler, D.J.; Chang, G.J. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J. Clin. Microbiol. 2006, 44, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Panella, A.J.; Velez, J.O.; Lambert, A.J.; Campbell, G.L. Chikungunya virus in US travelers returning from India, 2006. Emerg. Infect. Dis. 2007, 13, 764–767. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, 2nd ed.; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Posadas-Mondragón, A.; Aguilar-Faisal, J.L.; Chávez-Negrete, A.; Guillén-Salomón, E.; Alcántara-Farfán, V.; Luna-Rojas, L.; Ávila-Trejo, A.M.; Del Carmen Pacheco-Yépez, J. Indices of anti-dengue immunoglobulin G subclasses in adult Mexican patients with febrile and hemorrhagic dengue in the acute phase. Microbiol. Immunol. 2017, 61, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Rezza, G. Dengue and Chikungunya: Long-distance spread and outbreaks in naive areas. Pathog. Glob. Health 2014, 108, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.M.; Young, M.C.; Byas, A.D.; Murrieta, R.A.; Fauver, J.R.; Ebel, G.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 2017, 8, 15412. [Google Scholar] [CrossRef] [PubMed]
- Cigarroa-Toledo, N.; Blitvich, B.J.; Cetina-Trejo, R.C.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; Torres-Chablé, O.M.; Hamid, M.-N.; Friedberg, I.; González-Martinez, P.; Alonzo-Salomon, G.; et al. Chikungunya virus in febrile humans and Aedes aegypti mosquitoes, Yucatan, Mexico. Emerg. Infect. Dis. 2016, 22, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Kautz, T.F.; Díaz-González, E.E.; Erasmus, J.H.; Malo-García, I.R.; Langsjoen, R.M.; Patterson, E.I.; Auguste, D.I.; Forrester, N.L.; Sanchez-Casas, R.M.; Hernández-Ávila, M.; et al. Chikungunya virus as cause of Febrile Illness outbreak, Chiapas, Mexico, 2014. Emerg Infect Dis. 2015, 21, 2070–2073. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Afzal, S.; Yousaf, M.Z.; Shahid, M.; Amin, I.; Idrees, M.; Aftab, A. Paradoxical Role of Dengue Virus Envelope Protein Domain III Antibodies in Dengue Virus Infection. Crit. Rev. Eukaryot. Gene Exp. 2020, 30, 199–206. [Google Scholar] [CrossRef]
- Chong, H.Y.; Leow, C.Y.; Abdul Majeed, A.B.; Leow, C.H. Flavivirus infection-A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019, 274, 197770. [Google Scholar] [CrossRef] [PubMed]
- de Alwis, R.; Smith, S.A.; Olivarez, N.P.; Messer, W.B.; Huynh, J.P.; Wahala, W.M.; White, L.J.; Diamond, M.S.; Baric, R.S.; Crowe, J.E., Jr.; et al. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. USA 2012, 109, 7439–7444. [Google Scholar] [CrossRef] [PubMed]
- Tumkosit, U.; Siripanyaphinyo, U.; Takeda, N.; Tsuji, M.; Maeda, Y.; Ruchusatsawat, K.; Shioda, T.; Mizushima, H.; Chetanachan, P.; Wongjaroen, P.; et al. Anti-Chikungunya Virus Monoclonal Antibody That Inhibits Viral Fusion and Release. J. Virol. 2020, 94, e00252-20. [Google Scholar] [CrossRef]
- Verma, A.; Nayak, K.; Chandele, A.; Singla, M.; Ratageri, V.H.; Lodha, R.; Kabra, S.K.; Murali-Krishna, K.; Ray, P. Chikungunya-specific IgG and neutralizing antibody responses in natural infection of Chikungunya virus in children from India. Arch. Virol. 2021, 166, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.K.; Srikiatkhachorn, A.; Alera, M.T.; Fernandez, S.; Cummings, D.A.T.; Salje, H. Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic infection and subclinical seroconversion in a Philippine cohort. Int. J. Infect. Dis. 2020, 95, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Ochsenbein, A.F.; Fehr, T.; Lutz, C.; Suter, M.; Brombacher, F.; Hengartner, H.; Zinkernagel, R.M. Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999, 286, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- New, J.S.; King, R.G.; Kearney, J.F. Glycan Reactive Natural Antibodies and Viral Immunity. Viral Immunol. 2020, 33, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Fischinger, S.; Fallon, J.K.; Michell, A.R.; Broge, T.; Suscovich, T.J.; Streeck, H.; Alter, G. A high-throughput, bead-based, antigen-specific assay to assess the ability of antibodies to induce complement activation. J. Immunol. Methods 2019, 473, 112630. [Google Scholar] [CrossRef] [PubMed]
- Lum, F.M.; Teo, T.H.; Lee, W.W.; Kam, Y.W.; Rénia, L.; Ng, L.F. An essential role of antibodies in the control of Chikungunya virus infection. J. Immunol. 2013, 190, 6295–6302. [Google Scholar] [CrossRef] [PubMed]
- Appassakij, H.; Khuntikij, P.; Kemapunmanus, M.; Wutthanarungsan, R.; Silpapojakul, K. Viremic profiles in asymptomatic and symptomatic chikungunya fever: A blood transfusion threat? Transfusion 2013, 53 Pt 2, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
Dengue, n (%) | Chikungunya, n (%) | ||
---|---|---|---|
IgM | 30 (18%) | IgM | 11 (7%) |
IgG | 2 (1%) | ||
IgG | 141 (84%) | IgM | 46 (28%) |
IgG | 9 (5%) |
Dengue, n (%) | Chikungunya, n (%) | ||
---|---|---|---|
IgM | 12 (14%) | IgM | 3 (3%) |
IgG | 0 (0%) | ||
IgG | 76 (86%) | IgM | 23 (26%) |
IgG | 2(2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posadas-Mondragón, A.; Santiago-Cruz, J.A.; Pérez-Juárez, A.; Herrera-González, N.E.; Sosa-Delgado, S.M.; Wong-Arámbula, C.E.; Rodríguez-Maldonado, A.P.; Vázquez-Pichardo, M.; Duran-Ayala, D.; Aguilar-Faisal, J.L. Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses 2024, 16, 1098. https://doi.org/10.3390/v16071098
Posadas-Mondragón A, Santiago-Cruz JA, Pérez-Juárez A, Herrera-González NE, Sosa-Delgado SM, Wong-Arámbula CE, Rodríguez-Maldonado AP, Vázquez-Pichardo M, Duran-Ayala D, Aguilar-Faisal JL. Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses. 2024; 16(7):1098. https://doi.org/10.3390/v16071098
Chicago/Turabian StylePosadas-Mondragón, Araceli, José Angel Santiago-Cruz, Angélica Pérez-Juárez, Norma Estela Herrera-González, Sara M. Sosa-Delgado, Claudia Elena Wong-Arámbula, Abril Paulina Rodríguez-Maldonado, Mauricio Vázquez-Pichardo, Daniel Duran-Ayala, and José Leopoldo Aguilar-Faisal. 2024. "Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses" Viruses 16, no. 7: 1098. https://doi.org/10.3390/v16071098
APA StylePosadas-Mondragón, A., Santiago-Cruz, J. A., Pérez-Juárez, A., Herrera-González, N. E., Sosa-Delgado, S. M., Wong-Arámbula, C. E., Rodríguez-Maldonado, A. P., Vázquez-Pichardo, M., Duran-Ayala, D., & Aguilar-Faisal, J. L. (2024). Cross-Neutralizing Anti-Chikungunya and Anti-Dengue 2 IgG Antibodies from Patients and BALB/c Mice against Dengue and Chikungunya Viruses. Viruses, 16(7), 1098. https://doi.org/10.3390/v16071098