Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. TTV Analysis
2.4. BKPyV and JCPyV Analysis
2.5. CMV Analysis
2.6. Lymphocyte Subsets
2.7. Immunosuppressive Protocols
2.8. Kidney Transplant Biopsies
2.9. Prophylaxis Protocols
2.10. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Dynamics of Immune and Microbiologic Parameters within the 1st Year after KT
3.3. Characteristics of Patients Admitted Due to Infectious Events after KT
3.4. Infectious Events within the 1st Month after KT
3.5. Infectious Events between the 1st and 3rd Months after KT
3.6. Infectious Events between the 3rd and 6th Months after KT
3.7. Characteristics of Patients with Preformed Donor Specific Antibodies
3.8. Characteristics of Patients with De Novo Donor Specific Antibodies after KT
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, L.M.; Li, Y.; De Winter, B.C.M.; Shi, Y.-Y.; Baan, C.C.; Van Gelder, T.; Hesselink, D.A. Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- Rezahosseini, O.; Drabe, C.H.; Sørensen, S.S.; Rasmussen, A.; Perch, M.; Ostrowski, S.R.; Nielsen, S.D. Torque-Teno virus viral load as a potential endogenous marker of immune function in solid organ transplantation. Transplant. Rev. 2019, 33, 137–144. [Google Scholar] [CrossRef]
- Haloschan, M.; Bettesch, R.; Görzer, I.; Weseslindtner, L.; Kundi, M.; Puchhammer-Stöckl, E. TTV DNA plasma load and its association with age, gender, and HCMV IgG serostatus in healthy adults. Age 2014, 36, 9716. [Google Scholar] [CrossRef] [Green Version]
- Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: The human virome from bench to bedside. Clin. Microbiol. Infect. 2016, 22, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rijn, A.L.; Roos, R.; Dekker, F.W.; Rotmans, J.I.; Feltkamp, M. Torque teno virus load as marker of rejection and infection in solid organ transplantation—A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2393. [Google Scholar] [CrossRef]
- Redondo, N.; Navarro, D.; Aguado, J.M.; Fernández-Ruiz, M. Viruses, friends, and foes: The case of Torque Teno Virus and the net state of immunosuppression. Transpl. Infect. Dis. 2022, 24, e13778. [Google Scholar] [CrossRef] [PubMed]
- Doberer, K.; Haupenthal, F.; Nackenhorst, M.; Bauernfeind, F.; Dermuth, F.; Eigenschink, M.; Schiemann, M.; Kläger, J.; Görzer, I.; Eskandary, F.; et al. Torque Teno Virus Load Is Associated With Subclinical Alloreactivity in Kidney Transplant Recipients: A Prospective Observational Trial. Transplantation 2021, 105, 2112–2118. [Google Scholar] [CrossRef] [PubMed]
- Strassl, R.; Schiemann, M.; Doberer, K.; Görzer, I.; Puchhammer-Stöckl, E.; Eskandary, F.; Kikić; Gualdoni, G.; Vossen, M.G.; Rasoul-Rockenschaub, S.; et al. Quantification of Torque Teno Virus Viremia as a Prospective Biomarker for Infectious Disease in Kidney Allograft Recipients. J. Infect Dis. 2018, 218, 1191–1199. [Google Scholar] [CrossRef]
- Dendle, C.; Mulley, W.R.; Holdsworth, S. Can immune biomarkers predict infections in solid organ transplant recipients? A review of current evidence. Transplant. Rev. 2019, 33, 87–98. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; López-Medrano, F.; Aguado, J.M. Predictive tools to determine risk of infection in kidney transplant recipients. Expert Rev. Anti-Infect. Ther. 2020, 18, 423–441. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; López-Medrano, F.; Varela-Peña, P.; Lora-Pablos, D.; García-Reyne, A.; González, E.; Morales, J.M.; Juan, R.S.; Lumbreras, C.; Paz-Artal, E.; et al. Monitoring of immunoglobulin levels identifies kidney transplant recipients at high risk of infection. Am. J. Transplant. 2012, 12, 2763–2773. [Google Scholar] [CrossRef]
- Nickeleit, V.; Singh, H.K.; Randhawa, P.; Drachenberg, C.B.; Bhatnagar, R.; Bracamonte, E.; Chang, A.; Chon, W.J.; Dadhania, D.; Davis, V.G.; et al. The Banff Working Group Classification of Definitive Polyomavirus Nephropathy: Morphologic Definitions and Clinical Correlations. J. Am. Soc. Nephrol. 2018, 29, 680–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, H.H.; Randhawa, P.S.; AST Infectious Diseases Community of Practice. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 2019, 33, e13528. [Google Scholar] [CrossRef]
- Ljungman, P.; Boeckh, M.; Hirsch, H.H.; Josephson, F.; Lundgren, J.; Nichols, G.; Pikis, A.; Razonable, R.R.; Miller, V.; Griffiths, P.D. Definitions of Cytomegalovirus Infection and Disease in Transplant Patients for Use in Clinical Trials. Clin. Infect. Dis. 2017, 64, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612, Erratum in Ann. Intern. Med. 2011, 155, 408. [Google Scholar] [CrossRef]
- Gore, E.J.; Gomes-Neto, A.W.; Wang, L.; Bakker, S.J.L.; Niesters, H.G.M.; de Joode, A.A.E.; Verschuuren, E.A.M.; Westra, J.; Van Leer-Buter, C. Torquetenovirus Serum Load and Long-Term Outcomes in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 440. [Google Scholar] [CrossRef] [Green Version]
- Solis, M.; Velay, A.; Gantner, P.; Bausson, J.; Filipputtu, A.; Freitag, R.; Moulin, B.; Caillard, S.; Fafi-Kremer, S. Torquetenovirus viremia for early prediction of graft rejection after kidney transplantation. J. Infect. 2019, 79, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Querido, S.; Weigert, A.; Pinto, I.; Papoila, A.L.; Pessanha, M.A.; Gomes, P.; Adragão, T.; Paixão, P. Detection of JCV or BKV viruria and viremia after kidney transplantation is not associated with unfavorable outcomes. J. Med. Virol. 2023, 95, e28800. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; Albert, E.; Giménez, E.; Ruiz-Merlo, T.; Parra, P.; López-Medrano, F.; San Juan, R.; Polanco, N.; Andrés, A.; Navarro, D.; et al. Monitoring of alphatorquevirus DNA levels for the prediction of immunosuppression-related complications after kidney transplantation. Am. J. Transplant. 2019, 19, 1139–1149. [Google Scholar] [CrossRef]
- Querido, S.; Adragão, T.; Pinto, I.; Ormonde, C.; Papoila, A.L.; Pessanha, M.A.; Gomes, P.; Ferreira, S.; Figueira, J.M.; Cardoso, C.; et al. Torquetenovirus viral load is associated with anti-spike antibody response in SARS-CoV-2 mRNA BNT162b2 vaccinated kidney transplant patients. Clin. Transplant. 2022, 36, e14825. [Google Scholar] [CrossRef]
- Schiemann, M.; Puchhammer-Stöckl, E.; Eskandary, F.; Kohlbeck, P.; Rasoul-Rockenschaub, S.; Heilos, A.; Kozakowski, N.; Görzer, I.; Kikić; Herkner, H.; et al. Torque Teno Virus Load-Inverse Association with Antibody-Mediated Rejection after Kidney Transplantation. Transplantation 2017, 101, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Focosi, D.; Spezia, P.; Macera, L.; Salvadori, S.; Navarro, D.; Lanza, M.; Antonelli, G.; Pistello, M.; Maggi, F. Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin. Microbiol. Infect. 2020, 26, 1406–1410. [Google Scholar] [CrossRef]
- Giacconi, R.; Maggi, F.; Macera, L.; Pistello, M.; Provinciali, M.; Giannecchini, S.; Martelli, F.; Spezia, P.G.; Mariani, E.; Galeazzi, R.; et al. Torquetenovirus (TTV) load is associated with mortality in Italian elderly subjects. Exp. Gerontol. 2018, 112, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.A.; Young, J.C.; Clarke, E.L.; Diamond, J.M.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.; Milewski, R.K.; et al. Bidirectional transfer of Anelloviridae lineages between graft and host during lung transplantation. Am. J. Transplant. 2019, 19, 1086–1097. [Google Scholar] [CrossRef]
- Forqué, L.; Fernández-Ruiz, M.; Albert, E.; Giménez, E.; Monzó, C.M.; Chaves, J.; Redondo, N.; Rodríguez-Goncer, I.; Ruiz-Merlo, T.B.; Parra, P.C.; et al. Dynamics of Human Anelloviruses in Plasma and Clinical Outcomes Following Kidney Transplantation. Transplantation 2023, 107, 511–520. [Google Scholar] [CrossRef]
- Focosi, D.; Macera, L.; Boggi, U.; Nelli, L.C.; Maggi, F. Short-term kinetics of torque teno virus viraemia after induction immunosuppression confirm T lymphocytes as the main replication-competent cells. J. Gen. Virol. 2015, 96 Pt 1, 115–117. [Google Scholar] [CrossRef]
- Handala, L.; Descamps, V.; Morel, V.; Castelain, S.; François, C.; Duverlie, G.; Helle, F.; Brochot, E. No correlation between Torque Teno virus viral load and BK virus replication after kidney transplantation. J. Clin. Virol. 2019, 116, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Broeders, E.N.; Wissing, K.M.; Hazzan, M.; Ghisdal, L.; Hoang, A.-D.; Noel, C.; Mascart, F.; Abramowicz, D. Evolution of immunoglobulin and mannose binding protein levels after renal transplantation: Association with infectious complications. Transpl. Int. 2008, 21, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Augusto, J.-F.; Garnier, A.-S.; Demiselle, J.; Langs, V.; Picquet, J.; Legall, R.; Sargentini, C.; Culty, T.; Poli, C.; Ammi, M.; et al. Hypogammaglobulinemia and risk of severe infection in kidney transplant recipients. Transpl. Infect. Dis. 2016, 18, 741–751. [Google Scholar] [CrossRef]
- Florescu, D.F.; Kalil, A.C.; Qiu, F.; Schmidt, C.M.; Sandkovsky, U. What is the impact of hypogammaglobulinemia on the rate of infections and survival in solid organ transplantation? A meta-analysis. Am. J. Transplant. 2013, 13, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, M.; López-Medrano, F.; Allende, L.M.; Andrés, A.; García-Reyne, A.; Lumbreras, C.; San-Juan, R.; Morales, J.M.; Paz-Artal, E.; Aguado, J.M. Kinetics of peripheral blood lymphocyte subpopulations predicts the occurrence of opportunistic infection after kidney transplantation. Transpl. Int. 2014, 27, 674–685. [Google Scholar] [CrossRef] [PubMed]
Study Population | |
---|---|
Age at transplant, years | |
median [IQR] | 52.00 [42.50; 61.50] |
Gender, male, n (%) | |
53 (65.43%) | |
Dialysis vintage, months | |
median [IQR] | 63.00 [34.50; 95.00] |
Hepatitis C, n (%) | 5 (6.17%) |
Hepatitis B, n (%) | 1 (1.23%) |
HIV, n (%) | 3 (3.70%) |
Type of donor, n (%) | |
Deceased | 70 (86.42%) |
Living | 11 (13.58%) |
Non-heart-beating donor, n (%) | 77 (95.06%) |
Ureteral stent, n (%) | 64 (79.01%) |
Donor age, years | |
median [IQR] | 56.00 [42.25; 65.00] |
Donor gender, male, n (%) | 39 (48.15%) |
Cold ischemia time, hours | |
median [IQR] | 13.50 [8.25; 17.75] |
IgG CMV-positive recipient, n (%) | 65 (80.25%) |
IgG CMV-positive donor, n (%) | 74 (91.36%) |
Delayed graft function, n (%) | 19 (23.43%) |
Diabetes, n (%) | |
Before KT | 10 (12.35%) |
NODAT | 15 (18.52%) |
IMS induction Thymoglobulin, n (%) | 43 (53.09%) |
IMS induction Basiliximab, n (%) | 38 (46.91%) |
IMS induction Rituximab, n (%) | 3 (3.70%) |
IMS induction IVIg, n (%) | 8 (9.88%) |
Maintenance immunosuppression, n (%) | |
Tacrolimus + mycophenolate mofetil + prednisolone | 54 (66.67%) |
Tacrolimus + everolimus + prednisolone | 25 (30.86%) |
Cyclosporine + everolimus + prednisolone | 1 (1.23%) |
Tacrolimus + prednisolone | 1 (1.23%) |
Kidney biopsy, n (%) | 8 (9.88%) |
Acute rejection in the 1st year, n (%) | 4 (4.94%) |
PVAN, n (%) | |
Presumptive | 14 (17.28%) |
Confirmed | 1 (1.23%) |
Admissions after KT, n (%) | 32 (39.51%) |
1st admission, Infection, n (%) | 26/32 (81.25%) |
Time from KT to 1st admission, months, | |
median [IQR] | 2.6 [1.1; 5.2] |
2nd admission, Infection, n (%) | |
13/32 (40.63%) * | |
Time from KT to 2st admission, months, | |
median [IQR] | 4.8 [2.5; 6.7] |
3rd admission, Infection, n (%) | 3/13 (23.08%) ** |
Time from KT to 3rd admission, months, | |
median [IQR] | 8.0 [2.5; 8.8] |
n | % | |
---|---|---|
Acute pyelonephritis with or without bacteriemia | ||
Klebsiella pneumoniae | 9 | 23.69 |
Escherichia coli | 8 | 21.05 |
Enterococcus faecalis | 1 | 2.63 |
Without microbial identification | 1 | 2.63 |
Pneumonia | 3 | 7.90 |
CMV infection/disease | 2 | 5.26 |
COVID-19 | 7 | 18.42 |
Herpes zoster | 2 | 5.26 |
Acute gastroenteritis | 1 | 2.63 |
Acute cholecystitis | 1 | 2.63 |
Febrile neutropenia without microbial identification | 3 | 7.90 |
Patients with Admissions n = 26 | Patients without Admissions n = 49 | p-Value | |
---|---|---|---|
Age at transplant, years, | 54 [45; 63.50] | 49 [43; 62] | 0.4234 |
median [IQR] | (MW) | ||
Gender, male, n (%) | 16 (61.54) | 31 (63.27) | >0.9999 |
(Fisher) | |||
Previous KT (n/%) | 4 (15.38) | 6 (12.24) | 0.7306 |
(Fisher) | |||
Dialysis vintage, months, | 82 [46;109] | 63 [37; 95] | 0.3419 |
median, IQR | (MW) | ||
Type of TSFR | |||
Hemodialysis | 24 (92.31) | 39 (79.59) | 0.3525 |
Peritoneal dialysis | 1 (3.85) | 6 (12.24) | (Chi-Sq) |
Pre emptive | 1 (3.85) | 4 (81.63) | |
Hepatitis C (n/%) | 2 (7.69) | 2 (4.08) | 0.6059 |
(Fisher) | |||
Hepatitis B (n/%) | 0 (0) | 1 (2.04) | >0.9999 |
(Fisher) | |||
HIV (n/%) | 2 (7.69) | 0 (0) | 0.1171 |
(Fisher) | |||
Type of donor (n/%) | |||
Deceased | 24 (92.31) | 40 (81.63) | 0.3106 |
Living | 2 (7.69) | 9 (18.37) | (Fisher) |
Non heart beating donor (n/%) | 1 (3.85) | 3 (6.12) | >0.9999 |
(Fisher) | |||
Ureteral stent (n/%) | 6 (23.08) | 9 (18.37) | 0.7629 |
(Fisher) | |||
Donor age, years (median, IQR) | n = 25 | 0.1631 | |
58 [46; 67] | 52 [38; 63] | (MW) | |
Donor gender, male (n/%) | 14 (53.85) | 25 (51.02) | >0.9999 |
(Fisher) | |||
Cold ischemia time, hours (median, IQR) | 13 [10; 18] | 13 [7; 17] | 0.5628 |
(MW) | |||
IgG CMV-positive recipient, (n/%) | 22 (84.62) | 37 (75.51) | 0.5546 |
(Fisher) | |||
IgG CMV-positive donor, (n/%) | 25 (96.15) | 44 (89.80) | 0.6580 |
(Fisher) | |||
Delayed graft function (n/%) | 5 (19.23) | 11 (22.45) | >0.9999 |
(Fisher) | |||
Diabetes (n/%) | |||
Before KT | 4 (15.38) | 6 (12.24) | 0.3328 |
NODAT | 7 (26.92) | 7 (14.29) | (Chi-Sq) |
IMS induction Thymoglobulin (n/%) | 14 (53.85) | 24 (48.98) | 0.8093 |
(Fisher) | |||
IMS induction Basiliximab (n/%) | 12 (46.15) | 25 (51.02) | 0.8093 |
(Fisher) | |||
IMS induction Rituximab (n/%) | 1 (3.85) | 2 (4.08) | >0.9999 |
(Fisher) | |||
IMS induction IVIg (n/%) | 3 (11.54) | 5 (10.20) | >0.9999 |
(Fisher) | |||
Maintenance immunosuppression (n/%) | |||
Tacrolimus + MMF + prednisolone | 15 (57.69) | 37 (75.51) | 0.1598 |
Tacrolimus + everolimus + prednisolone | 9 (34.62) | 12 (24.49) | (Chi-Sq) |
Cyclosporine + everolimus + prednisolone | 1 (3.85) | 0 (0) | |
Tacrolimus + prednisolone | 1 (3.85) | 0 (0) | |
Kidney biopsy (n/%) | 2 (7.69) | 1 (2.04) | 0.2743 |
(Fisher) | |||
Acute rejection in the 1st year (n/%) | 2 (7.69) | 0 (0) | 0.1171 |
(Fisher) | |||
PVAN (n/%) | |||
Presumptive | 2 (7.69) | 9 (18.37) | 0.3367 |
Confirmed | 0 (0) | 1 (2.04) | (Chi-Sq) |
With admission (n = 26) vs. Without Admission (n = 49) | PRE-TR | 1st WEEK | 1st MONTH | 3rd MONTH | 6th MONTH | 9th MONTH | 12th MONTH | p-Value |
---|---|---|---|---|---|---|---|---|
TTV, cp/mL | 5832 | 2852 | 78,004 | 11,099,956 | 1,700,097 | 381,132 | 191,166 | 0.2238 *** |
median [IQR] | [380; 24,608] | [111; 12,320] | [5661; 403,278] | [52,600; 91,372,336] | [46,826; 16,316,084] | [3688; 11,321,619] | [8416; 992,170] | |
With | 840 | 921 | 24,130 | 9,510,760 | 523,694 | 161,321 | 37,917 | |
Without | [0; 12,949] | [127; 13,241] | [868; 171,058] | [594,792; 120,119,216] | [20,891; 85,892,567] | [406; 3,873,827] | [1992; 2,833,886] | 0.3925 # |
p-value * | 0.2095 | 0.4717 | 0.1213 | 0.5973 | 0.8448 | 0.5300 | 0.4734 | |
Log10 TTV, cp/mL | 3.80 | 3.45 | 4.90 | 7.00 | 6.20 | 5.60 | 5.30 | <0.0001 *** |
median, IQR | [2.50; 4.35] | [1.95; 4.10] | [3.70; 5.60] | [4.70; 7.95] | [4.65; 7.20] | [3.55; 7.10] | [3.90; 5.93] | |
With | 2.90 | 3.00 | 4.40 | 7.00 | 5.70 | 5.20 | 4.60 | <0.0001 # |
Without | [0.00; 4.10] | [2.10; 4.15] | [2.95; 5.25] | [5.75; 8.05] | [4.30; 7.95] | [3.60; 6.60] | [3.30; 6.40] | |
p-value * | 0.2029 | 0.5100 | 0.1224 | 0.5971 | 0.8804 | 0.5117 | 0.4463 | |
Complement C3, mg/dL | 93.3 | 96.0 | 102.0 | 111.0 | 104.0 | 109.0 | 110.5 | <0.0001 *** |
median, IQR | [81.9; 108.5] | [85.5; 109.3] | [91.0; 115] | [99.5; 124.8] | [90.0; 137.0] | [97.3; 123.8] | [97.5; 128.3] | |
With | 96.3 | 100.0 | 101 | 104.0 | 106.0 | 107.0 | 106.0 | <0.0001 # |
Without | [85.9; 108.0] | [89.0; 112.0] | [88; 111] | [95.0; 118.0] | [95.5; 117.5] | [97.0; 120.0] | [97.1; 119.5] | |
p-value * | 0.5567 | 0.4333 | 0.5117 | 0.3362 | 0.7313 | 0.5933 | 0.3419 | |
Complement C4, mg/dL | 27.7 | 24.5 | 24.0 | 26.5 | 24.0 | 27.0 | 27.3 | 0.3951 *** |
median, IQR | [22.1; 35.7] | [19.0; 31.3] | [18.0; 32.5] | [20.0; 29.3] | [20.5; 33.0] | [21.8; 30.3] | [19.7; 32.3] | |
With | 28.4 | 25.0 | 22.0 | 25.0 | 24.0 | 25.0 | 25.4 | <0.0001 # |
Without | [24.0; 33.0] | [20.0; 31.5] | [19.0; 27.0] | [19.5; 30.0] | [20.5; 29.0] | [19.5; 30.5] | [18.1; 29.7] | |
p-value * | 0.7788 | 0.8572 | 0.1384 | 0.7251 | 0.6108 | 0.4974 | 0.4633 | |
IgG, mg/dL | 1260 | 918 | 863 | 824 | 916 | 972 | 946 | 0.0001 *** |
median, IQR | [1095; 1510] | [690; 1123] | [709; 1055] | [685; 1023] | [741; 1110] | [807; 1133] | [801; 1160] | |
With | 1140 | 822 | 780 | 771 | 877 | 862 | 884 | 0.0001 # |
Without | [982; 1245] | [726; 1075] | [700; 999] | [714; 875] | [767; 945] | [772; 982] | [776; 1065] | |
p-value * | 0.0410 | 0.7131 | 0.3238 | 0.2885 | 0.5081 | 0.1230 | 0.1950 | |
IgA, mg/dL | 245 | 176 | 177 | 162 | 164 | 185 | 183 | <0.0001 *** |
median, IQR | [178; 329] | [111; 215] | [134; 218] | [124; 200] | [126; 209] | [137; 2079] | [148; 224] | |
With | 259 | 178 | 176 | 173 | 188 | 188 | 196 | <0.0001 # |
Without | [194; 336] | [133; 244] | [139; 256] | [130; 257] | [130: 258] | [130; 248] | [136; 258] | |
p-value * | 0.5798 | 0.3119 | 0.3351 | 0.1747 | 0.1373 | 0.4078 | 0.4269 | |
IgM, mg/dL | 97.00 | 65.00 | 65.00 | 85.00 | 85.00 | 86.50 | 90.20 | 0.0459 *** |
median, IQR | [60.50; 120.50] | [44.00; 91.50] | [44.00; 125.00] | [34.50; 118.00] | [40.50; 109.50] | [50.50; 133.50] | [55.38; 111.80] | |
With | 87.00 | 55.00 | 75.00 | 61.00 | 67.00 | 66.00 | 71.70 | <0.0001 # |
Without | [83.50; 110.50] | [42.50; 82.50] | [47.00; 95.00] | [41.50; 89.50] | [43.00; 95.00] | [44.00; 96.00] | [49.15; 104.50] | |
p-value * | 0.4279 | 0.3064 | 0.6599 | 0.2233 | 0.3986 | 0.0990 | 0.2068 | |
BKPyV viremia | ||||||||
With | - | |||||||
Pos, n (%) | 0 | 1 | 3 | 1 | 2 | 2 | 0.5818 | |
Neg, n (%) | - | 26 | 24 | 23 | 24 | 24 | 24 | CS |
Without | ||||||||
Pos, n (%) | 0 | 0 | 7 | 5 | 5 | 7 | 0.0147 | |
Neg, n (%) | 49 | 49 | 42 | 44 | 44 | 42 | CS | |
p-value ** | 1.000 | 0.3378 | 1.000 | 0.6569 | 1.000 | 0.4835 | ||
JCPyV viremia | - | |||||||
With | ||||||||
Pos, n (%) | - | 0 | 0 | 1 | 1 | 1 | 1 | 0.8443 |
Neg, n (%) | 26 | 25 | 25 | 24 | 25 | 25 | CS | |
Without | ||||||||
Pos, n (%) | 0 | 0 | 0 | 1 | 2 | 2 | 0.3160 | |
Neg, n (%) | 49 | 49 | 49 | 48 | 47 | 47 | CS | |
p-value ** | 1.000 | 1.000 | 0.3467 | 1.000 | 1.000 | 1.000 | ||
BKPyV viruria | - | |||||||
With | ||||||||
Pos, n (%) | - | 3 | 5 | 8 | 7 | 8 | 6 | 0.5921 |
Neg, n (%) | 22 | 20 | 18 | 18 | 18 | 20 | CS | |
Without | ||||||||
Pos, n (%) | 3 | 5 | 11 | 15 | 13 | 13 | 0.0088 | |
Neg, n (%) | 48 | 44 | 37 | 34 | 36 | 36 | CS | |
p-value ** | 0.3884 | 0.2904 | 0.5786 | 1.000 | 0.7888 | 0.7884 | ||
JCPyV viruria | - | |||||||
With | ||||||||
Pos, n (%) | - | 4 | 5 | 5 | 6 | 5 | 10 | 0.4438 |
Neg, n (%) | 21 | 20 | 21 | 19 | 21 | 16 | CS | |
Without | ||||||||
Pos, n (%) | 10 | 8 | 11 | 13 | 13 | 14 | 0.7324 | |
Neg, n (%) | 38 | 41 | 37 | 36 | 36 | 35 | CS | |
p-value ** | 0.7590 | 0.7517 | 0.7761 | 1.000 | 0.5774 | 0.4403 | ||
Creatinine, mg/dL | - | 1.70 | 1.49 | 1.44 | 1.37 | 1.48 | 1.34 | 0.0079 *** |
median, IQR | [1.33; 3.53] | [1.05; 1.95] | [0.94; 1.78] | [1.16; 1.81] | [1.04; 1.86] | [1.10; 1.91] | ||
With | - | 1.70 | 1.33 | 1.24 | 1.29 | 1.35 | 1.23 | 0.0002 # |
Without | [1.20; 2.45] | [1.08; 1.79] | [1.08; 1.54] | [1.09; 1.48] | [1.06; 1.59] | [1.07; 1.63] | ||
p-value * | 0.6840 | 0.4050 | 0.5483 | 0.2307 | 0.2233 | 0.4735 | ||
eGFR, mL/min/1.73m2 | - | 37.50 | 50.00 | 55.00 | 54.00 | 52.00 | 57.50 | <0.0001 *** |
median, IQR | [18.50; 59.75] | [36.00; 70.00] | [43.00; 75.00] | [38.50; 61.00] | [40.25; 65.75] | [37.50; 67.75] | ||
With | - | 42.00 | 56.00 | 58.00 | 60.00 | 61.00 | 61.00 | <0.0001 # |
Without | [26.00; 61.00] | [44.50; 69.00] | [48.00; 72.50] | [48.50; 75.009] | [45.00; 76.00] | [45.00; 70.50] | ||
p-value * | 0.5557 | 0.3954 | 0.4838 | 0.1531 | 0.1401 | 0.3198 | ||
Albumin creatinine ratio, mg/g | - | - | 49.40 | 37.00 | 42.10 | 33.65 | 21.70 | 0.2834 *** |
median, IQR | [20.60; 108.50] | [10.60; 71.45] | [14.20; 86.10] | [9.38; 87.15] | [13.45; 70.50] | |||
With | - | - | 26.20 | 18.40 | 18.70 | 16.90 | 17.10 | 0.4062 # |
Without | [12.43; 72.75] | [9.00; 37.75] | [8.10; 88.75] | [7.95; 63.40] | [7.89; 45.30] | |||
p-value * | 0.1710 | 0.0780 | 0.2992 | 0.2453 | 0.1970 | |||
Tacrolimus, µg/mL | - | 7.15 | 9.00 | 8.65 | 6.55 | 7.20 | 5.85 | 0.0076 *** |
median, IQR | [5.75; 11.78] | [7.70; 10.70] | [5.55; 9.25] | [5.05; 8.68] | [5.10; 8.50] | [4.90; 6.83] | ||
With | - | 7.50 | 10.40 | 8.70 | 7.50 | 7.30 | 6.50 | <0.0001 *** |
Without | [6.00; 9.00] | [8.70; 12.15] | [7.25; 9.90] | [6.30; 8.70] | [6.20; 8.60] | [5.55; 7.95] | ||
p-value * | 0.6196 | 0.0970 | 0.5298 | 0.1012 | 0.6847 | 0.0576 | ||
CRP, mg/dL | - | 0.76 | 0.14 | 0.30 | 0.15 | 0.22 | 0.16 | 0.5807 *** |
median, IQR | [0.51; 1.18] | [0.10; 1.09] | [0.10; 1.83] | [0.10; 0.45] | [0.10; 0.46] | [0.10; 0.32] | ||
With | - | 0.75 | 0.10 | 0.10 | 0.14 | 0.15 | 0.12 | <0.0001 *** |
Without | [0.36; 1.54] | [0.10; 0.13] | [0.10; 0.30] | [0.10; 0.39] | [0.10; 0.46] | [0.10; 0.39] | ||
p-value * | 0.9010 | 0.0078 | 0.0114 | 0.7334 | 0.4007 | 0.8605 | ||
WBC, Cells/uL | 5900 | 6950 | 6100 | 4350 | 4600 | 5150 | 5500 | <0.0001 *** |
median, IQR | [4750; 7100] | [4950; 9325] | [3850; 8150] | [2975; 5725] | [3600; 6500] | [3650; 7350] | [4250; 7950] | |
With | 6600 | 7200 | 6800 | 5000 | 5400 | 5600 | 5700 | <0.0001 # |
Without | [5300; 8100] | [5500; 9400] | [5000; 8400] | [4050; 6600] | [4300; 6600] | [4700; 6950] | [4800; 6700] | |
p-value * | 0.0625 | 0.6600 | 0.1434 | 0.0663 | 0.2261 | 0.3591 | 0.7715 | |
Total lymph, Cells/uL | 1698 | 427 | 750 | 833 | 936 | 954 | 1292 | 0.0014 *** |
median, IQR | [1363; 2810] | [208; 1217] | [422; 1195] | [464; 1282] | [742; 1353] | [794; 1751] | [978; 2115] | |
With | 1550 | 1007 | 1529 | 1226 | 1350 | 1287 | 1358 | 0.0176 *** |
Without | [1315; 1654] | [210; 1658] | [517; 2593] | [685; 1890] | [747; 1776] | [925; 1797] | [926; 1833] | |
p-value * | 0.1977 | 0.3324 | 0.0327 | 0.0463 | 0.2296 | 0.2809 | 0.5013 | |
CD3+ T cells, Cells/uL | 1214 | 230 | 570 | 629 | 690 | 757 | 979 | 0.0014 *** |
median, IQR | [814; 2290] | [44; 799] | [209; 987] | [394; 969] | [477; 1011] | [508; 1339] | [735; 1603] | |
With | 1166 | 588 | 1093 | 981 | 994 | 952 | 1064 | 0.0227 *** |
Without | [827; 1319] | [43; 1229] | [417; 1947] | [482; 1464] | [527; 1395] | [672; 1374] | [675; 1439] | |
p-value * | 0.4604 | 0.3555 | 0.0359 | 0.0595 | 0.2184 | 0.3740 | 0.5641 | |
CD4+ T cells, Cells/uL | 808 | 99 | 247 | 334 | 359 | 423 | 464 | 0.0103 *** |
median, IQR | [539; 1357] | [17; 597] | [79; 660] | [113; 640] | [161; 640] | [157; 780] | [222; 908] | |
With | 770 | 405 | 686 | 619 | 605 | 563 | 571 | 0.0193 *** |
Without | [581; 930] | [17; 892] | [210; 1424] | [198; 1046] | [248; 957] | [281; 899] | [276; 884] | |
p-value * | 0.6714 | 0.3408 | 0.0246 | 0.0280 | 0.1002 | 0.1286 | 0.5833 | |
CD8+ T cells Cells/uL | 333 | 120 | 175 | 210 | 290 | 358 | 462 | <0.0001 *** |
median, IQR | [272; 885] | [21; 203] | [101; 382] | [137; 438] | [216; 453] | [224; 658] | [328; 684] | |
With | 313 | 217 | 363 | 309 | 361 | 384 | 437 | <0.0001 *** |
Without | [216; 407] | [25; 352] | [150; 564] | [201; 486] | [196; 477] | [274; 552] | [296; 574] | |
p-value * | 0.2776 | 0.1669 | 0.0526 | 0.1390 | 0.6989 | 0.8879 | 0.1932 | |
CD19+ B cells Cells/uL | 149 | 155 | 153 | 87 | 93 | 91 | 104 | 0.0064 *** |
median, IQR | [117; 239] | [127; 236] | [79; 230] | [52; 137] | [61; 158] | [50; 128] | [61; 237] | |
With | 132 | 174 | 234 | 136 | 103 | 106 | 123 | <0.0001 *** |
Without | [93; 187] | [120; 346] | [144; 435] | [91; 209] | [60; 174] | [66; 168] | [78; 207] | |
p-value * | 0.4815 | 0.5644 | 0.0290 | 0.0154 | 0.5655 | 0.2213 | 0.4223 | |
NK cells Cells/uL | 279 | 19 | 66 | 98 | 126 | 166 | 187 | <0.0001 *** |
median, IQR | [159; 367] | [10; 82] | [28; 132] | [48; 161] | [88; 195] | [93; 202] | [115; 344] | |
With | 185 | 43.00 | 72 | 124 | 132 | 159 | 143 | <0.0001 *** |
Without | [120; 315] | [6; 115] | [34; 151] | [58; 173] | [79; 198] | [98; 250] | [102; 214] | |
p-value * | 0.4043 | 0.6312 | 0.5377 | 0.3336 | 0.9241 | 0.7131 | 0.2703 |
Patients without Pre-Formed DSAs (n = 61) | Patients with De Novo DSA n = 11 | Patients without De Novo DSA n = 50 | p-Value |
---|---|---|---|
Age at transplant, years, | 0.8568 | ||
median [IQR] | 47 [34; 66] | 50 [42; 61] | (MW) |
Gender, male, n (%) | 0.3017 | ||
9 (81.82%) | 31 (62.00%) | (Fisher) | |
Dialysis vintage, months, | 0.6334 | ||
median [IQR] | 56 [37; 92] | 63 [32; 94] | (MW) |
Hepatitis C, n (%) | >0.9999 | ||
0 (0%) | 4 (8.00%) | (Fisher) | |
Hepatitis B, n (%) | >0.9999 | ||
0 (0%) | 0 (0%) | (Fisher) | |
HIV, n (%) | 0.3306 | ||
1 (9.09%) | 1 (2.00%) | (Fisher) | |
Type of donor, n (%) | |||
Deceased | 10 (90.91%) | 42 (84.00%) | >0.9999 |
Living | 1 (9.09%) | 8 (16.00%) | (Fisher) |
Non-heart-beating donor, n (%) | >0.9999 | ||
0 (0%) | 3 (6.00%) | (Fisher) | |
Ureteral stent, n (%) | 0.4569 | ||
4 (36.36%) | 12 (24.00%) | (Fisher) | |
Donor age, years | 0.0485 | ||
median [IQR] | 45 [36; 59] | 61 [47; 67] | (MW) |
Donor gender, male, n (%) | 0.7396 | ||
6 (54.55%) | 22 (44.00%) | (Fisher) | |
Cold ischemia time, hours, | 0.6273 | ||
median [IQR] | 12 [8; 15] | 14 [8; 18] | (MW) |
IgG CMV-positive recipient, n (%) | 0.4290 | ||
10 (90.91%) | 38 (76.00%) | (Fisher) | |
IgG CMV-positive donor, n (%) | 0.2941 | ||
9 (81.82%) | 46 (92.00%) | (Fisher) | |
Delayed graft function, n (%) | >0.9999 | ||
2 (18.18%) | 11 (22.00%) | (Fisher) | |
Diabetes, n (%) | |||
Before KT | 3 (27.27%) | 7 (14.00%) | 0.5574 |
NODAT | 2 (18.18%) | 10 (20.00%) | (Chi-Sq) |
IMS induction Thymoglobulin (n/%) | 0.5258 | ||
4 (36.36%) | 24 (48.00%) | (Fisher) | |
IMS induction Basiliximab (n/%) | 0.5258 | ||
7 (63.64%) | 26 (52.00%) | (Fisher) | |
IMS induction Rituximab (n/%) | 0.3306 | ||
1 (9.09%) | 1 (2.00%) | (Fisher) | |
IMS induction IVIg, n (%) | >0.9999 | ||
0 (0%) | 1 (2.00%) | (Fisher) | |
Maintenance immunosuppression, n (%) | |||
Tacrolimus + MMF + prednisolone | 7 (63.64%) | 33 (66.00%) | 0.1841 |
Tacrolimus + everolimus + prednisolone | 3 (27.27%) | 16 (32.00%) | (Chi-Sq) |
Cyclosporine + everolimus + prednisolone | 1 (9.09%) | 0 (0%) | |
Tacrolimus + prednisolone | 0 (0%) | 1 (2.00%) | |
Kidney biopsy (n/%) | 0.4554 | ||
1 (9.09%) | 2 (4.00%) | (Fisher) | |
Acute rejection in the 1st year, n (%) | 0.3306 | ||
1 (9.09%) | 1 (2.00%) | (Fisher) | |
PVAN (n/%) | |||
Presumptive | 2 (18.18%) | 10 (20.00%) | >0.9999 |
Confirmed | 0 | 0 | (Fisher) |
De novo DSAs | TOTAL (Class I/Class II) | - | |
1 Month | 2 (0/2) | ||
3 Month | 3 (0/3) | ||
6 Month | 5 (2/3) | ||
9 Month | 7 (2/6) * | ||
12 Month | 6 (1/5) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Querido, S.; Martins, C.; Gomes, P.; Pessanha, M.A.; Arroz, M.J.; Adragão, T.; Casqueiro, A.; Oliveira, R.; Costa, I.; Azinheira, J.; et al. Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study. Viruses 2023, 15, 1464. https://doi.org/10.3390/v15071464
Querido S, Martins C, Gomes P, Pessanha MA, Arroz MJ, Adragão T, Casqueiro A, Oliveira R, Costa I, Azinheira J, et al. Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study. Viruses. 2023; 15(7):1464. https://doi.org/10.3390/v15071464
Chicago/Turabian StyleQuerido, Sara, Catarina Martins, Perpétua Gomes, Maria Ana Pessanha, Maria Jorge Arroz, Teresa Adragão, Ana Casqueiro, Regina Oliveira, Inês Costa, Jorge Azinheira, and et al. 2023. "Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study" Viruses 15, no. 7: 1464. https://doi.org/10.3390/v15071464
APA StyleQuerido, S., Martins, C., Gomes, P., Pessanha, M. A., Arroz, M. J., Adragão, T., Casqueiro, A., Oliveira, R., Costa, I., Azinheira, J., Paixão, P., & Weigert, A. (2023). Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study. Viruses, 15(7), 1464. https://doi.org/10.3390/v15071464