Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Synthetic Strategies
2.1.2. Chemical Characterization
2.2. Biology
2.2.1. Cell Lines and Viruses
2.2.2. Cytotoxicity Assay
2.2.3. Antiviral Assay
2.2.4. Time of Drug Addition Assay
2.2.5. Virucidal activity
2.3. Docking
3. Results and Discussion
3.1. Chemistry
3.2. Anti-BVDV Activity
3.3. Time of Drug Addition
3.4. Virucidal Activity
3.5. Molecular Docking
3.5.1. Trimethoxy-Substituted Compounds 2c, 6c and 7c Docked in a Strategic Binding Pocket in E2 Protein
3.5.2. Trimethoxy-Substituted Compounds 2c, 6c and 7c Docked in a Strategic Binding Pocket in E2 Protein
3.5.3. Docking of Compound 2c to BVDV RNA-Dependent RNA Polymerase (RdRp)
4. Conclusions
5. Experimental Characterization
5.1. Characterization of Intermediates 1–7a and 1–7b
5.1.1. 2-(4-Nitrophenyl)-1H-benzo[d]imidazole (1a)
5.1.2. 5-Chloro-2-(4-nitrophenyl)-1H-benzo[d]imidazole (2a)
5.1.3. 5,6-Dichloro-2-(4-nitrophenyl)-1H-benzo[d]imidazole (3a)
5.1.4. 5-Fluoro-2-(4-nitrophenyl)-1H-benzo[d]imidazole (4a)
5.1.5. 5,6-Difluoro-2-(4-nitrophenyl)-1H-benzo[d]imidazole (5a)
5.1.6. 5-Methyl-2-(4-nitrophenyl)-1H-benzo[d]imidazole (6a)
5.1.7. 5,6-Dimethyl-2-(4-nitrophenyl)-1H-benzo[d]imidazole (7a)
5.1.8. 4-(1H-Benzo[d]imidazol-2-yl)aniline (1b)
5.1.9. 4-(5-Chloro-1H-benzo[d]imidazol-2-yl)aniline (2b)
5.1.10. 4-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)aniline (3b)
5.1.11. 4-(5-Fluoro-1H-benzo[d]imidazol-2-yl)aniline (4b)
5.1.12. 4-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)aniline (5b)
5.1.13. 4-(5-Methyl-1H-benzo[d]imidazol-2-yl)aniline (6b)
5.1.14. 4-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)aniline (7b)
5.2. Synthesis, Purification and Characterization of Benzimidazole Derivatives
5.2.1. N-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (1c), N-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (1d) and N-(4-(1H-Benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (1e)
5.2.2. N-(4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (2c), N-(4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (2d) and N-(4-(5-Chloro-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (2e)
5.2.3. N-(4-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (3c), N-(4-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (3d), N-(4-(5,6-Dichloro-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (3e)
5.2.4. N-(4-(5-Fluoro-1H-benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (4c), N-(4-(5-Fluoro-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (4d), N-(4-(5-Fluoro-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (4e)
5.2.5. N-(4-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (5c), N-(4-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (5d), N-(4-(5,6-Difluoro-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (5e)
5.2.6. N-(4-(5-Methyl-1H-benzo[d]imidazol-2-yl)phenyl)- 3,4,5-trimethoxybenzamide (6c), N-(4-(5-Methyl-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (6d), N-(4-(5-Methyl-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (6e)
5.2.7. N-(4-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-3,4,5-trimethoxybenzamide (7c), N-(4-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-4-nitrobenzamide (7d), N-(4-(5,6-Dimethyl-1H-benzo[d]imidazol-2-yl)phenyl)-4-chlorobenzamide (7e)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Scott Muerhoff, A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed Revision to the Taxonomy of the Genus Pestivirus, Family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Kielian, M. Flaviviruses: Braking the Entering. Curr. Opin. Virol. 2013, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, B.W. 75 Years of Bovine Viral Diarrhea Virus: Current Status and Future Applications of the Use of Directed Antivirals. Antivir. Res. 2021, 196, 105205. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; West, K.H.; Cortese, V.S.; Myers, S.L.; Carman, S.; Martin, K.M.; Haines, D.M. Lesions and Distribution of Viral Antigen Following an Experimental Infection of Young Seronegative Calves with Virulent Bovine Virus Diarrhea Virus-Type II. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1998, 62, 161–169. [Google Scholar]
- Hessman, B.E.; Fulton, R.W.; Sjeklocha, D.B.; Murphy, T.A.; Ridpath, J.F.; Payton, M.E. Evaluation of Economic Effects and the Health and Performance of the General Cattle Population after Exposure to Cattle Persistently Infected with Bovine Viral Diarrhea Virus in a Starter Feedlot. Am. J. Vet. Res. 2009, 70, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Harasawa, R.; Mizusawa, H. Demonstration and Genotyping of Pestivirus RNA from Mammalian Cell Lines. Microbiol. Immunol. 1995, 39, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Harasawa, R.; Sasaki, T. Sequence Analysis of the 5’ Untranslated Region of Pestivirus RNA Demonstrated in Interferons for Human Use. Biologicals 1995, 23, 263–269. [Google Scholar] [CrossRef]
- Harasawa, R.; Tomiyama, T. Evidence of Pestivirus RNA in Human Virus Vaccines. J. Clin. Microbiol. 1994, 32, 1604–1605. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, B.W.; Marley, M.S.; Galik, P.K.; Walz, P.H.; Zhang, Y.; Riddell, K.P.; Dykstra, C.C.; Boykin, D.W.; Kumar, A.; Cruz-Espindola, C.; et al. Antiviral Treatment of Calves Persistently Infected with Bovine Viral Diarrhoea Virus. Antivir. Chem. Chemother. 2012, 22, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Al-Kubati, A.A.G.; Hussen, J.; Kandeel, M.; Al-Mubarak, A.I.A.; Hemida, M.G. Recent Advances on the Bovine Viral Diarrhea Virus Molecular Pathogenesis, Immune Response, and Vaccines Development. Front. Vet. Sci. 2021, 8, 475. [Google Scholar] [CrossRef]
- Liang, D.; Sainz, I.F.; Ansari, I.H.; Gil, L.H.V.G.; Vassilev, V.; Donis, R.O. The Envelope Glycoprotein E2 Is a Determinant of Cell Culture Tropism in Ruminant Pestiviruses. J. Gen. Virol. 2003, 84, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Bollini, M.; Leal, E.S.; Adler, N.S.; Aucar, M.G.; Fernández, G.A.; Pascual, M.J.; Merwaiss, F.; Alvarez, D.E.; Cavasotto, C.N. Discovery of Novel Bovine Viral Diarrhea Inhibitors Using Structure-Based Virtual Screening on the Envelope Protein E2. Front. Chem. 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baginski, S.G.; Pevear, D.C.; Seipel, M.; Sun, S.C.; Benetatos, C.A.; Chunduru, S.K.; Rice, C.M.; Collett, M.S. Mechanism of Action of a Pestivirus Antiviral Compound. Proc. Natl. Acad. Sci. USA 2000, 97, 7981–7986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.W.; Scarnati, H.T.; Priestley, E.S.; De Lucca, I.; Bansal, A.; Williams, J.K. Selection of a Thiazole Urea-Resistant Variant of Bovine Viral Diarrhoea Virus That Maps to the RNA-Dependent RNA Polymerase. Antivir. Chem. Chemother. 2002, 13, 315–323. [Google Scholar] [CrossRef]
- Sun, J.-H.; Lemm, J.A.; O’Boyle, D.R.; Racela, J.; Colonno, R.; Gao, M. Specific Inhibition of Bovine Viral Diarrhea Virus Replicase. J. Virol. 2003, 77, 6753–6760. [Google Scholar] [CrossRef] [Green Version]
- Tabarrini, O.; Manfroni, G.; Fravolini, A.; Cecchetti, V.; Sabatini, S.; De Clercq, E.; Rozenski, J.; Canard, B.; Dutartre, H.; Paeshuyse, J.; et al. Synthesis and Anti-BVDV Activity of Acridones as New Potential Antiviral Agents. J. Med. Chem. 2006, 49, 2621–2627. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.; Rizzo, C.J.; Kettner, C.A.; Korant, B.D.; Scarnati, H.T.; King, R.W. Inhibition of the Bovine Viral Diarrhoea Virus NS3 Serine Protease by a Boron-Modified Peptidyl Mimetic of Its Natural Substrate. Antivir. Chem. Chemother. 2001, 12, 367–373. [Google Scholar] [CrossRef]
- Branza-Nichita, N.; Durantel, D.; Carrouée-Durantel, S.; Dwek, R.A.; Zitzmann, N. Antiviral Effect of N-Butyldeoxynojirimycin against Bovine Viral Diarrhea Virus Correlates with Misfolding of E2 Envelope Proteins and Impairment of Their Association into E1-E2 Heterodimers. J. Virol. 2001, 75, 3527–3536. [Google Scholar] [CrossRef] [Green Version]
- Durantel, D.; Branza-Nichita, N.; Carrouée-Durantel, S.; Butters, T.D.; Dwek, R.A.; Zitzmann, N. Study of the Mechanism of Antiviral Action of Iminosugar Derivatives against Bovine Viral Diarrhea Virus. J. Virol. 2001, 75, 8987–8998. [Google Scholar] [CrossRef] [Green Version]
- Zitzmann, N.; Mehta, A.S.; Carrouée, S.; Butters, T.D.; Platt, F.M.; McCauley, J.; Blumberg, B.S.; Dwek, R.A.; Block, T.M. Imino Sugars Inhibit the Formation and Secretion of Bovine Viral Diarrhea Virus, a Pestivirus Model of Hepatitis C Virus: Implications for the Development of Broad Spectrum Anti-Hepatitis Virus Agents. Proc. Natl. Acad. Sci. USA 1999, 96, 11878–11882. [Google Scholar] [CrossRef] [Green Version]
- Markland, W.; McQuaid, T.J.; Jain, J.; Kwong, A.D. Broad-Spectrum Antiviral Activity of the IMP Dehydrogenase Inhibitor VX-497: A Comparison with Ribavirin and Demonstration of Antiviral Additivity with Alpha Interferon. Antimicrob. Agents Chemother. 2000, 44, 859–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musiu, S.; Pürstinger, G.; Stallinger, S.; Vrancken, R.; Haegeman, A.; Koenen, F.; Leyssen, P.; Froeyen, M.; Neyts, J.; Paeshuyse, J. Substituted 2,6-Bis(Benzimidazol-2-Yl)Pyridines: A Novel Chemical Class of Pestivirus Inhibitors That Targets a Hot Spot for Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase. Antivir. Res. 2014, 106, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.J.; Merwaiss, F.; Leal, E.; Quintana, M.E.; Capozzo, A.V.; Cavasotto, C.N.; Bollini, M.; Alvarez, D.E. Structure-Based Drug Design for Envelope Protein E2 Uncovers a New Class of Bovine Viral Diarrhea Inhibitors That Block Virus Entry. Antivir. Res. 2018, 149, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, G.; Corona, P.; Loriga, M.; Carta, A.; Paglietti, G.; Giliberti, G.; Sanna, G.; Farci, P.; Marongiu, M.E.; la Colla, P. 5-Acetyl-2-Arylbenzimidazoles as Antiviral Agents. Part 4. Eur. J. Med. Chem. 2012, 53, 83–97. [Google Scholar] [CrossRef]
- Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; et al. Antiviral Activity of Benzimidazole Derivatives. II. Antiviral Activity of 2-Phenylbenzimidazole Derivatives. Bioorganic. Med. Chem. 2010, 18, 2937–2953. [Google Scholar] [CrossRef]
- Tonelli, M.; Novelli, F.; Tasso, B.; Vazzana, I.; Sparatore, A.; Boido, V.; Sparatore, F.; la Colla, P.; Sanna, G.; Giliberti, G.; et al. Antiviral Activity of Benzimidazole Derivatives. III. Novel Anti-CVB-5, Anti-RSV and Anti-Sb-1 Agents. Bioorg. Med. Chem. 2014, 22, 4893–4909. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Li, Y.; Wang, Y. Computational Study Exploring the Interaction Mechanism of Benzimidazole Derivatives as Potent Cattle Bovine Viral Diarrhea Virus Inhibitors. J. Agric. Food Chem. 2016, 64, 5941–5950. [Google Scholar] [CrossRef]
- Carta, A.; Loriga, M.; Paglietti, G.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Sanna, T.; Ibba, C.; La Colla, P.; Loddo, R. Design, Synthesis, and Preliminary in Vitro and in Silico Antiviral Activity of [4,7]Phenantrolines and 1-Oxo-1,4-Dihydro-[4,7]Phenantrolines against Single-Stranded Positive-Sense RNA Genome Viruses. Bioorganic Med. Chem. 2007, 15, 1914–1927. [Google Scholar] [CrossRef]
- Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M.E.; Giliberti, G.; Iuliano, F.; et al. Quinoline Tricyclic Derivatives. Design, Synthesis and Evaluation of the Antiviral Activity of Three New Classes of RNA-Dependent RNA Polymerase Inhibitors. Bioorganic Med. Chem. 2011, 19, 7070–7084. [Google Scholar] [CrossRef]
- Asthana, S.; Shukla, S.; Ruggerone, P.; Vargiu, A.V. Molecular Mechanism of Viral Resistance to a Potent Non-Nucleoside Inhibitor Unveiled by Molecular Simulations. Biochemistry 2014, 53, 6941–6953. [Google Scholar] [CrossRef]
- Asthana, S.; Shukla, S.; Vargiu, A.V.; Ceccarelli, M.; Ruggerone, P.; Paglietti, G.; Marongiu, M.E.; Blois, S.; Giliberti, G.; La Colla, P. Different Molecular Mechanisms of Inhibition of Bovine Viral Diarrhea Virus and Hepatitis C Virus RNA-Dependent RNA Polymerases by a Novel Benzimidazole. Biochemistry 2013, 52, 3752–3764. [Google Scholar] [CrossRef] [PubMed]
- Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Ibba, R.; Laurini, E.; Fermeglia, M.; Pricl, S.; Desideri, N.; Atzori, E.M.M.; et al. A Combined in Silico/in Vitro Approach Unveils Common Molecular Requirements for Efficient BVDV RdRp Binding of Linear Aromatic N-Polycyclic Systems. Eur. J. Med. Chem. 2016, 117, 321–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibba, R.; Corona, P.; Carta, A.; Giunchedi, P.; Loddo, R.; Sanna, G.; Delogu, I.; Piras, S. Antiviral Activities of 5-Chlorobenzotriazole Derivatives. Mon. Fur. Chem. 2018, 149, 1247–1256. [Google Scholar] [CrossRef]
- Bahrami, K.; Khodaei, M.M.; Kavianinia, I. A Simple and Efficient One-Pot Synthesis of 2-Substituted Benzimidazoles. Synthesis 2007, 4, 547–550. [Google Scholar] [CrossRef]
- Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; de Clercq, E. Rapid and Automated Tetrazolium-Based Colorimetric Assay for the Detection of Anti-HIV Compounds. J. Virol. Methods 1988, 20, 309–321. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. Adv. Math. 2014, 262, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. Available online: https://pymol.org/2/support.html (accessed on 30 March 2022).
- El Omari, K.; Iourin, O.; Harlos, K.; Grimes, J.M.; Stuart, D.I. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry. Cell Rep. 2013, 3, 30–35. [Google Scholar] [CrossRef] [Green Version]
| ||||||
---|---|---|---|---|---|---|
Compound | R1 | R2 | R’ | MDBK CC50 a | BVDV EC50 b | S.I. |
1c | H | H | 3,4,5-tri-OCH3 | 28.5 | 2.2 | 12.9 |
1d | H | H | 4-NO2 | >100 | >100 | - |
1e | H | H | 4-Cl | >100 | >100 | - |
2c | Cl | H | 3,4,5-tri-OCH3 | 45 | 0.09 | 500 |
2d | Cl | H | 4-NO2 | >100 | 1.9 | >52.6 |
2e | Cl | H | 4-Cl | >100 | >100 | - |
3c | Cl | Cl | 3,4,5-tri-OCH3 | 28 | 1.3 | 21.5 |
3d | Cl | Cl | 4-NO2 | >100 | 53 | >1.9 |
3e | Cl | Cl | 4-Cl | 60 | >60 | - |
4c | F | H | 3,4,5-tri-OCH3 | >100 | 41 | >2.4 |
4d | F | H | 4-NO2 | >100 | 7.9 | >12.7 |
4e | F | H | 4-Cl | >100 | >100 | - |
5c | F | F | 3,4,5-tri-OCH3 | >100 | 1.4 | >71.4 |
5d | F | F | 4-NO2 | >100 | 3.6 | >27.8 |
5e | F | F | 4-Cl | >100 | >100 | - |
6c | CH3 | H | 3,4,5-tri-OCH3 | >100 | 0.23 | >434.8 |
6d | CH3 | H | 4-NO2 | >100 | >100 | - |
6e | CH3 | H | 4-Cl | >100 | >100 | - |
7c | CH3 | CH3 | 3,4,5-tri-OCH3 | >100 | 0.3 | >333.3 |
7d | CH3 | CH3 | 4-NO2 | >100 | >100 | - |
7e | CH3 | CH3 | 4-Cl | >100 | >100 | - |
NM 108 | >100 | 1.5 | >66.7 | |||
Ribavirin | >100 | 18 | >5.6 |
Affinity Energy | ||
---|---|---|
Compound | 2c | −6.4 kcal·mol−1 |
6c | −6.9 kcal·mol−1 | |
7c | −6.8 kcal·mol−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibba, R.; Riu, F.; Delogu, I.; Lupinu, I.; Carboni, G.; Loddo, R.; Piras, S.; Carta, A. Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication. Viruses 2022, 14, 1300. https://doi.org/10.3390/v14061300
Ibba R, Riu F, Delogu I, Lupinu I, Carboni G, Loddo R, Piras S, Carta A. Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication. Viruses. 2022; 14(6):1300. https://doi.org/10.3390/v14061300
Chicago/Turabian StyleIbba, Roberta, Federico Riu, Ilenia Delogu, Ilenia Lupinu, Gavino Carboni, Roberta Loddo, Sandra Piras, and Antonio Carta. 2022. "Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication" Viruses 14, no. 6: 1300. https://doi.org/10.3390/v14061300
APA StyleIbba, R., Riu, F., Delogu, I., Lupinu, I., Carboni, G., Loddo, R., Piras, S., & Carta, A. (2022). Benzimidazole-2-Phenyl-Carboxamides as Dual-Target Inhibitors of BVDV Entry and Replication. Viruses, 14(6), 1300. https://doi.org/10.3390/v14061300