Alphavirus Identification in Neotropical Bats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Total RNA Extraction and Generic nsP4 Amplification by Reverse Transcription and Nested Polymerase Chain Reaction (RT-Nested PCR)
2.3. Sequencing and Phylogenetic Analysis
2.4. Cytochrome B Assay
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weaver, S.C.; Barrett, A.D.T. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Carrera, J.-P.; Forrester, N.; Wang, E.; Vittor, A.Y.; Haddow, A.D.; López-Vergès, S.; Abadía, I.; Castaño, E.; Sosa, N.; Báez, C.; et al. Eastern equine encephalitis in Latin America. N. Engl. J. Med. 2013, 369, 732–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunini, S.; França, D.D.S.; Silva, J.B.; Silva, L.N.; Silva, F.P.A.; Spadoni, M.; Rezza, G. High frequency of Mayaro virus IgM among febrile patients, central Brazil. Emerg. Infect. Dis. 2017, 23, 1025–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, J.P.; Cucunuba, Z.M.; Neira, K.; Lambert, B.; Pitti, Y.; Liscano, J.; Garzon, J.L.; Beltran, D.; Collado-Mariscal, L.; Saenz, L.; et al. Endemic and epidemic human alphavirus infections in eastern Panama: An analysis of population-based cross-sectional surveys. Am. J. Trop. Med. Hyg. 2020, 103, 2429. [Google Scholar] [CrossRef]
- Nunes, M.R.T.; Faria, N.R.; de Vasconcelos, J.M.; Golding, N.; Kraemer, M.U.; de Oliveira, L.F.; da Silva Azevedo, R.d.S.; da Silva, D.E.A.; da Silva, E.V.P.; da Silva, S.P.; et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Luis, M.A.; del Valle-Mendoza, J.; Silva-Caso, W.; Gil-Ramirez, T.; Levy-Blitchtein, S.; Bazán-Mayra, J.; Zavaleta-Gavidia, V.; Cornejo-Pacherres, D.; Palomares-Reyes, C.; del Valle, L.J. An emerging public health threat: Mayaro virus increases its distribution in Peru. Int. J. Infect. Dis. 2020, 92, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Pisano, M.B.; Contigiani, M.S.; Re, V. Venezuelan Equine Encephalitis Virus. In Molecular Detection of Animal Viral Pathogens; Liu, D., Ed.; CRC Press/Taylor & Francis.: Boca Raton, FL, USA, 2016; pp. 269–276. ISBN 9781498700375. [Google Scholar]
- Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Ferro, C.; Haddow, A.D.; Weaver, S.C. Endemic Venezuelan equine encephalitis in the Americas: Hidden under the dengue umbrella. Future Virol. 2011, 6, 721–740. [Google Scholar] [CrossRef] [Green Version]
- Pisano, M.B.; Ré, V.E.; Díaz, L.A.; Farías, A.; Stein, M.; Sanchez-Seco, M.P.; Tenorio, A.; Almirón, W.R.; Contigiani, M.S. Enzootic activity of pixuna and Rio Negro viruses (Venezuelan equine encephalitis complex) in a neotropical region of Argentina. Vector Borne Zoonotic Dis. 2010, 10, 199–201. [Google Scholar] [CrossRef]
- Pisano, M.B.; Torres, C.; Ré, V.E.; Farías, A.A.; Sánchez Seco, M.P.; Tenorio, A.; Campos, R.; Contigiani, M.S. Genetic and evolutionary characterization of Venezuelan equine encephalitis virus isolates from Argentina. Infect. Genet. Evol. 2014, 26, 72–79. [Google Scholar] [CrossRef]
- Cardozo, F.; Konigheim, B.; Albrieu-Llinás, G.; Rivarola, M.E.; Aguilar, J.; Rojas, A.; Quaglia, A.I.; Paez, M.; Guillén, Y.; Diaz, A.; et al. Alphaviruses: Serological Evidence of Human Infection in Paraguay (2012–2013). Vector-Borne Zoonotic Dis. 2018, 18, 266–272. [Google Scholar] [CrossRef]
- Somma Moreira, R.E.; Campione-Piccardo, J.; Russi, J.C.; Hortal de Giordano, M.; Bauzá, C.A.; Peluffo, G.; Tosi, H.C. Arbovirus en el Uruguay. Arch. Pediatr. Urug. 1970, 41, 359–363. [Google Scholar]
- Delfraro, A.; Burgueño, A.; Morel, N.; González, G.; García, A.; Morelli, J.; Pérez, W.; Chiparelli, H.; Arbiza, J. Fatal Human Case of Western Equine Encephalitis, Uruguay. Emerg. Infect. Dis. 2011, 17, 952. [Google Scholar] [CrossRef] [PubMed]
- Burgueño, A.; Frabasile, S.; Díaz, L.A.; Cabrera, A.; Pisano, M.B.; Rivarola, M.E.; Contigiani, M.; Delfraro, A. Genomic characterization and seroprevalence studies on alphaviruses in Uruguay. Am. J. Trop. Med. Hyg. 2018, 98, 1811–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teeling, E.; Vernes, S.; Davalos, L.M.; Ray, D.A.; Gilbert, M.T.P.; Myers, E.; Bat1K Consortium. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for all Living Bat Species. Annu. Rev. Anim. Biosci. 2018, 6, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [Green Version]
- López-Baucells, A.; Rocha, R.; Fernández-Llamazares, Á. When bats go viral: Negative framings in virological research imperil bat conservation. Mamm. Rev. 2018, 48, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Brook, C.E.; Dobson, A.P. Bats as “special” reservoirs for emerging zoonotic pathogens. Trends Microbiol. 2015, 23, 172–180. [Google Scholar] [CrossRef]
- Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Mills, J.N.; Timonin, M.E.; Willis, C.K.; Cunningham, A.A.; et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013, 280, 20122753. [Google Scholar] [CrossRef] [Green Version]
- O’shea, T.J.; Cryan, P.M.; Cunningham, A.A.; Fooks, A.R.; Hayman, D.T.; Luis, A.D.; Peel, A.J.; Plowright, R.K.; Wood, J.L. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 2014, 20, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Mollentze, N.; Streicker, D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef] [Green Version]
- Calderón, A.; Guzmán, C.; Oviedo-Socarras, T.; Mattar, S.; Rodríguez, V.; Castañeda, V.; Tadeu, L.; Figueiredo, M. Tropical Medicine and Infectious Disease Two Cases of Natural Infection of Dengue-2 Virus in Bats in the Colombian Caribbean. Trop. Med. Infect. Dis. 2021, 6, 35. [Google Scholar] [CrossRef]
- Fagre, A.C.; Kading, R.C. Can Bats Serve as Reservoirs for Arboviruses? Viruses 2019, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán, C.; Calderón, A.; Oviedo, T.; Mattar, S.; Castañeda, J.; Rodriguez, V.; Tadeu, L.; Figueiredo, M. Molecular and cellular evidence of natural Venezuelan equine encephalitis virus infection in frugivorous bats in Colombia. Vet. World 2020, 13, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plowright, R.K.; Parrish, C.R.; Mccallum, H.; Hudson, P.J.; Ko, A.I.; Graham, L.; Lloyd-smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotomayor-Bonilla, J.; Abella-Medrano, C.A.; Chaves, A.; Álvarez-Mendizábal, P.; Rico-Chávez, Ó.; Ibáñez-Bernal, S.; Rostal, M.K.; Ojeda-Flores, R.; Barbachano-Guerrero, A.; Gutiérrez-Espeleta, G.; et al. Potential Sympatric Vectors and Mammalian Hosts of Venezuelan Equine Encephalitis Virus in Southern Mexico. J. Wildl. Dis. 2017, 53, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Reaser, J.K.; Locke, H.; Woodley, S.J.; Patz, J.A.; Becker, D.J.; Oppler, G.; Hudson, P.J.; Tabor, G.M. Land use-induced spillover: A call to action to safeguard environmental, animal, and human health. Lancet Planet. Health 2021, 5, e237–e245. [Google Scholar] [CrossRef]
- Botto Nuñez, G.; González, E.M.; Rodales, A.L. Conservación de los murciélagos (Mammalia: Chiroptera) de Uruguay: Estado actual y perspectivas. Mastozool. Neotrop. 2019, 26, 49–64. [Google Scholar] [CrossRef]
- Guarino, H.; Castilho, J.G.; Souto, J.; de Novaes Oliveira, R.; Carrieri, M.L.; Kotait, I. Antigenic and genetic characterization of rabies virus isolates from Uruguay. Virus Res. 2013, 173, 415–420. [Google Scholar] [CrossRef]
- Botto Nuñez, G.; Becker, D.J.; Plowright, R.K. The emergence of vampire bat rabies in Uruguay within a historical context. Epidemiol. Infect. 2019, 147, e180. [Google Scholar] [CrossRef] [Green Version]
- Botto Nuñez, G.; Becker, D.J.; Lawrence, R.L.; Plowright, R.K. Synergistic Effects of Grassland Fragmentation and Temperature on Bovine Rabies Emergence. Ecohealth 2020, 17, 203–216. [Google Scholar] [CrossRef]
- Moreira Marrero, L.; Botto Nuñez, G.; Malta, L.; Delfraro, A.; Frabasile, S. Ecological and Conservation Significance of Herpesvirus Infection in Neotropical Bats. Ecohealth 2021, 18, 123–133. [Google Scholar] [CrossRef] [PubMed]
- González, E.M.; Martínez-Lanfranco, J.A. Mamíferos de Uruguay. Guía de Campo e Introducción a su Estudio y Conservación; Silvestre, V., Ed.; MNHN: Montevideo, Uruguay, 2010. [Google Scholar]
- Sánchez-Seco, M.P.; Rosario, D.; Quiroz, E.; Guzmán, G.; Tenorio, A. A generic nested-RT-PCR followed by sequencing for detection and identification of members of the alphavirus genus. J. Virol. Methods 2001, 95, 153–161. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, F.M.; Ditchfield, A.D.; Meyer, D.; Morgante, J.S. Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). J. Zool. Syst. Evol. Res. 2007, 45, 372–378. [Google Scholar] [CrossRef]
- Richard Hoyos, L.; Juan Suaza, V.; Tenorio, A.; Uribe, S.; Gallego-Gómez, J. Molecular detection of Eastern Equine Encephalitis virus in mosquitoes from La Pintada (Antioquia). Rev. MVZ Cordoba 2015, 20, 4800–4806. [Google Scholar] [CrossRef] [Green Version]
- Moratelli, R.; Calisher, C.H. Bats and zoonotic viruses: Can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz 2015, 110, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, C.; Calderón, A.; Martinez, C.; Oviedo, M.; Mattar, S. Eco-epidemiology of the Venezuelan equine encephalitis virus in bats of Córdoba and Sucre, Colombia. Acta Trop. 2019, 191, 178–184. [Google Scholar] [CrossRef]
- Bittar, C.; Machado, R.R.G.; Comelis, M.T.; Bueno, L.M.; Morielle-Versute, E.; Beguelini, M.R.; De Souza, R.P.; Nogueira, M.L.; Rahal, P. Lack of serological and molecular evidence of arbovirus infections in bats from Brazil. PLoS ONE 2018, 13, e0207010. [Google Scholar] [CrossRef]
- Eastern Equine Encephalitis. Epidemiology & Geographic Distribution. Available online: https://www.cdc.gov/easternequineencephalitis/tech/epi.html (accessed on 29 December 2021).
- Arrigo, N.C.; Adams, A.P.; Weaver, S.C. Evolutionary Patterns of Eastern Equine Encephalitis Virus in North versus South America Suggest Ecological Differences and Taxonomic Revision. J. Virol. 2010, 84, 1014–1025. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-López, R.; Suaza-Vasco, J.; Rúa-Uribe, G.; Uribe, S.; Gallego-Gómez, J.C. Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Mem. Inst. Oswaldo Cruz 2016, 111, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novaes, R.L.M.; Wilson, D.E.; Moratelli, R. A new species of Myotis (Chiroptera, Vespertilionidae) from Uruguay. Vertebr. Zool. 2021, 71, 711. [Google Scholar] [CrossRef]
- Kuno, G.; Mackenzie, J.S.; Junglen, S.; Hubálek, Z.; Plyusnin, A.; Gubler, D.J. Vertebrate reservoirs of arboviruses: Myth, synonym of amplifier, or reality? Viruses 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Sikes, R.S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar] [CrossRef] [PubMed]
Family | Genus and/or Species | # of Samples | Department | Georeference | Year |
---|---|---|---|---|---|
Molossidae | Molossus rufus | 1 | Artigas | 30.23 S, 57.57 W | 2013–2015 |
Molossus molossus | 1 | ||||
Eumops bonariensis | 1 | ||||
Molossops temminckii | 2 | ||||
Vespertilionidae | Myotis spp. | 2 | |||
Eptesicus furinalis | 2 | ||||
Eptesicus diminutus | 2 | ||||
Phyllostomidae | Desmodus rotundus | 19 | Maldonado | 34.48 S, 54.61 W | 2013 |
Vespertilionidae | Eptesicus furinalis | 1 | Montevideo | 34.86 S, 56.20 W | 2015 |
Molossidae | Tadarida brasiliensis | 28 | Rivera | 31.52 S, 55.59 W | 2015 |
Vespertilionidae | Myotis spp. | 13 | |||
Molossidae | Molossus molossus | 3 | Rocha | 34.29 S, 54.06 W | 2013 |
Vespertilionidae | Eptesicus furinalis | 2 |
Family | Genus/Species | Result | Sample (Lab. N°) | GB Accession Number | Department | Collection Year |
---|---|---|---|---|---|---|
Molossidae | Tadarida brasiliensis | RNV | 26 | MZ868634 | Rivera | 2015 |
Tadarida brasiliensis | RNV | 28 | MZ868635 | Rivera | 2015 | |
Tadarida brasiliensis | RNV | 31 | MZ868637 | Rivera | 2015 | |
Tadarida brasiliensis | RNV | 35 | MZ890137 | Rivera | 2015 | |
Tadarida brasiliensis | RNV | 38 | MZ868636 | Rivera | 2015 | |
Tadarida brasiliensis | RNV | 39 | MZ890138 | Rivera | 2015 | |
Vespertilionidae | Myotis spp. | RNV | 11 | MZ890136 | Artigas | 2013 |
Myotis spp. | EEEV | 56 | MZ848197 | Rivera | 2015 | |
Myotis spp. | EEEV | 61 | MZ868633 | Rivera | 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira Marrero, L.; Botto Nuñez, G.; Frabasile, S.; Delfraro, A. Alphavirus Identification in Neotropical Bats. Viruses 2022, 14, 269. https://doi.org/10.3390/v14020269
Moreira Marrero L, Botto Nuñez G, Frabasile S, Delfraro A. Alphavirus Identification in Neotropical Bats. Viruses. 2022; 14(2):269. https://doi.org/10.3390/v14020269
Chicago/Turabian StyleMoreira Marrero, Lucía, Germán Botto Nuñez, Sandra Frabasile, and Adriana Delfraro. 2022. "Alphavirus Identification in Neotropical Bats" Viruses 14, no. 2: 269. https://doi.org/10.3390/v14020269
APA StyleMoreira Marrero, L., Botto Nuñez, G., Frabasile, S., & Delfraro, A. (2022). Alphavirus Identification in Neotropical Bats. Viruses, 14(2), 269. https://doi.org/10.3390/v14020269