Bromodeoxyuridine Labelling to Determine Viral DNA Localization in Fluorescence and Electron Microscopy: The Case of Adenovirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses and Cells
2.2. Immunofluorescence Microscopy
2.3. Conventional Electron Microscopy of Infected Cells
2.4. Immunoelectron Microscopy
3. Results
3.1. Optimizing the Pulse Time: Labeling with Short BrdU Pulses
3.2. Optimizing the Pulse Time: Labeling with Long BrdU Pulses
3.3. Optimizing the BrdU Dose: Long Pulses with Two Doses of BrdU
3.4. Optimizing the BrdU Concentration: Effect of BrdU at High Concentration in Electron Microscopy
3.5. Note Regarding HCl Treatment
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kricka, L.J. Stains, labels and detection strategies for nucleic acids assays. Ann. Clin. Biochem. 2002, 39, 114–129. [Google Scholar] [CrossRef]
- Darby, I.A. Situ Hybridization Protocols, 2nd ed.; Humana Press: Totowa, NJ, USA, 1994; Volume 123. [Google Scholar]
- Komatsu, T.; Robinson, D.R.; Hisaoka, M.; Ueshima, S.; Okuwaki, M.; Nagata, K.; Wodrich, H. Tracking adenovirus genomes identifies morphologically distinct late DNA replication compartments. Traffic 2016, 17, 1168–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, I.H.; Suomalainen, M.; Andriasyan, V.; Kilcher, S.; Mercer, J.; Neef, A.; Luedtke, N.W.; Greber, U.F. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe 2013, 14, 468–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, T.; Quentin-Froignant, C.; Carlon-Andres, I.; Lagadec, F.; Rayne, F.; Ragues, J.; Kehlenbach, R.H.; Zhang, W.; Ehrhardt, A.; Bystricky, K.; et al. In Vivo Labelling of Adenovirus DNA Identifies Chromatin Anchoring and Biphasic Genome Replication. J. Virol. 2018, 92, e00795-18. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Heyneman, C.; Walker, S.; Ulrich, R.G. Interaction of monoclonal antibodies directed against bromodeoxyuridine with pyrimidine bases, nucleosides, and DNA. J. Immunol. 1986, 136, 1791–1795. [Google Scholar] [PubMed]
- Larsen, J.K.; Jensen, P.O.; Larsen, J. Flow cytometric analysis of RNA synthesis by detection of bromouridine incorporation. Curr. Protoc. Cytom. 2000, 12, 7.12.1–7.12.11. [Google Scholar] [CrossRef]
- Besse, S.; Puvion-Dutilleul, F. High resolution localization of replicating viral genome in adenovirus-infected HeLa cells. Eur. J. Cell Biol. 1994, 63, 269–279. [Google Scholar]
- Puvion-Dutilleul, F.; Besse, S.; Pichard, E.; Cajean-Feroldi, C. Release of viruses and viral DNA from nucleus to cytoplasm of HeLa cells at late stages of productive adenovirus infection as revealed by electron microscope in situ hybridization. Biol. Cell 1998, 90, 5–38. [Google Scholar] [CrossRef]
- Angeletti, P.C.; Engler, J.A. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J. Virol. 1998, 72, 2896–2904. [Google Scholar] [CrossRef] [Green Version]
- Pombo, A.; Ferreira, J.; Bridge, E.; Carmo-Fonseca, M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 1994, 13, 5075–5085. [Google Scholar] [CrossRef]
- Carvalho, T.; Seeler, J.S.; Ohman, K.; Jordan, P.; Pettersson, U.; Akusjarvi, G.; Carmo-Fonseca, M.; Dejean, A. Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. J. Cell Biol. 1995, 131, 45–56. [Google Scholar] [CrossRef]
- Stracker, T.H.; Carson, C.T.; Weitzman, M.D. Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 2002, 418, 348–352. [Google Scholar] [CrossRef]
- Kjellen, L.; Pereira, H.G.; Valentine, R.C.; Armstrong, J.A. An Analysis of Adenovirus Particles and Soluble Antigens Produced in the Presence of 5-Bromodeoxyuridine. Nature 1963, 199, 1210–1211. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, P.; González, R.A. Formation of adenovirus DNA replication compartments. FEBS Lett. 2019, 593, 3518–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, A.J. Adenoviridae: The Viruses and Their Replication. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; Volume II, p. 3177. [Google Scholar]
- Flint, S.J.; Enquist, L.W.; Racaniello, V.R.; Skalka, A.M. Principles of Virology, 3rd ed.; ASM Press: Washington, DC, USA, 2009; Volume I. [Google Scholar]
- Pied, N.; Wodrich, H. Imaging the adenovirus infection cycle. FEBS Lett. 2019, 593, 3419–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbert, D.N.; Cutt, J.R.; Shenk, T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J. Virol. 1985, 56, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puvion-Dutilleul, F.; Pichard, E. Segregation of viral double-stranded and single-stranded DNA molecules in nuclei of adenovirus infected cells as revealed by electron microscope in situ hybridization. Biol. Cell 1992, 76, 139–150. [Google Scholar] [CrossRef]
- Puvion-Dutilleul, F.; Puvion, E. Analysis by in situ hybridization and autoradiography of sites of replication and storage of single- and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J. Struct. Biol. 1990, 103, 280–289. [Google Scholar] [CrossRef]
- Puvion-Dutilleul, F.; Puvion, E. Replicating single-stranded adenovirus type 5 DNA molecules accumulate within well-delimited intranuclear areas of lytically infected HeLa cells. Eur. J. Cell Biol. 1990, 52, 379–388. [Google Scholar]
- Puvion-Dutilleul, F. Simultaneous detection of highly phosphorylated proteins and viral major DNA binding protein distribution in nuclei of adenovirus type 5-infected HeLa cells. J. Histochem. Cytochem. 1991, 39, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.E.; Chahal, J.S.; Flint, S.J. Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J. Virol. 2012, 86, 13554–13565. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T.; Nagata, K. Replication-uncoupled histone deposition during adenovirus DNA replication. J. Virol. 2012, 86, 6701–6711. [Google Scholar] [CrossRef] [Green Version]
- Ostberg, S.; Tormanen Persson, H.; Akusjarvi, G. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers. Virology 2012, 433, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Condezo, G.N.; San Martín, C. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog. 2017, 13, e1006320. [Google Scholar] [CrossRef] [Green Version]
- Franqueville, L.; Henning, P.; Magnusson, M.; Vigne, E.; Schoehn, G.; Blair-Zajdel, M.E.; Habib, N.; Lindholm, L.; Blair, G.E.; Hong, S.S.; et al. Protein crystals in Adenovirus type 5-infected cells: Requirements for intranuclear crystallogenesis, structural and functional analysis. PLoS ONE 2008, 3, e2894. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.J.; Atchison, R.W. Paracrystal formation in cell cultures infected with adenovirus type 2. J. Virol. 1971, 8, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, R.; Hearing, P.; Bosch, A.; Chillón, M. Differential amplification of adenovirus vectors by flanking the packaging signal with attB/attP-PhiC31 sequences: Implications for helper-dependent adenovirus production. Virology 2007, 367, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besse, S.; Puvion-Dutilleul, F. Compartmentalization of cellular and viral DNAs in adenovirus type 5 infection as revealed by ultrastructural in situ hybridization. Chromosome Res. 1994, 2, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Charman, M.; Herrmann, C.; Weitzman, M.D. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett. 2019, 593, 3531–3550. [Google Scholar] [CrossRef] [Green Version]
- Lenk, R.; Storch, T.; Maizel, J.V., Jr. Cell architecture during adenovirus infection. Virology 1980, 105, 19–34. [Google Scholar] [CrossRef]
- Puvion-Dutilleul, F.; Bachellerie, J.P.; Visa, N.; Puvion, E. Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J. Cell Sci. 1994, 107, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Puvion-Dutilleul, F.; Puvion, E. Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol. Cell 1991, 71, 135–147. [Google Scholar] [CrossRef]
- Puvion-Dutilleul, F.; Roussev, R.; Puvion, E. Distribution of viral RNA molecules during the adenovirus type 5 infectious cycle in HeLa cells. J. Struct. Biol. 1992, 108, 209–220. [Google Scholar] [CrossRef]
- Puvion-Dutilleul, F.; Legrand, V.; Mehtali, M.; Chelbi-Alix, M.K.; de The, H.; Puvion, E. Deletion of the fiber gene induces the storage of hexon and penton base proteins in PML/Sp100-containing inclusions during adenovirus infection. Biol. Cell 1999, 91, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Lutz, P.; Puvion-Dutilleul, F.; Lutz, Y.; Kedinger, C. Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product. J. Virol. 1996, 70, 3449–3460. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Calatrava, M.; Grave, L.; Puvion-Dutilleul, F.; Chatton, B.; Kedinger, C. Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J. Virol. 2001, 75, 7131–7141. [Google Scholar] [CrossRef] [Green Version]
- Seki, T.; Dmitriev, I.; Kashentseva, E.; Takayama, K.; Rots, M.; Suzuki, K.; Curiel, D.T. Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J. Virol. 2002, 76, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Condezo, G.N.; Marabini, R.; Ayora, S.; Carazo, J.M.; Alba, R.; Chillón, M.; San Martín, C. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k. J. Virol. 2015, 89, 9653–9664. [Google Scholar] [CrossRef] [Green Version]
- Hassell, J.A.; Weber, J. Genetic analysis of adenovirus type 2. VIII. Physical locations of temperature-sensitive mutations. J. Virol. 1978, 28, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977, 36, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Reich, N.C.; Sarnow, P.; Duprey, E.; Levine, A.J. Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. Virology 1983, 128, 480–484. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Conejero, R.; Pérez-Berná, A.J.; Condezo, G.N.; Ortega-Esteban, A.; del Alamo, M.; de Pablo, P.J.; San Martín, C. Biophysical methods to monitor structural aspects of the adenovirus infectious cycle. Methods Mol. Biol. 2014, 1089, 1–24. [Google Scholar] [PubMed]
- Traktman, P.; Boyle, K. Methods for Analysis of Poxvirus DNA Replication. In Vaccinia Virus and Poxvirology: Methods and Protocols; Isaacs, S.N., Ed.; Humana Press: Totowa, NJ, USA, 2004; Volume 269, pp. 169–185. [Google Scholar]
- Sohn, S.Y.; Hearing, P. Adenovirus sequesters phosphorylated STAT1 at viral replication centers and inhibits STAT dephosphorylation. J. Virol. 2011, 85, 7555–7562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seibel, N.M.; Eljouni, J.; Nalaskowski, M.M.; Hampe, W. Nuclear localization of enhanced green fluorescent protein homomultimers. Anal. Biochem. 2007, 368, 95–99. [Google Scholar] [CrossRef]
- Alba, R.; Cots, D.; Ostapchuk, P.; Bosch, A.; Hearing, P.; Chillón, M. Altering the Ad5 packaging domain affects the maturation of the Ad particles. PLoS ONE 2011, 6, e19564. [Google Scholar] [CrossRef] [Green Version]
- Morris, S.M. The genetic toxicology of 5-bromodeoxyuridine in mammalian cells. Mutat Res. 1991, 258, 161–188. [Google Scholar] [CrossRef]
- Nguyen, E.K.; Nemerow, G.R.; Smith, J.G. Direct evidence from single-cell analysis that human {alpha}-defensins block adenovirus uncoating to neutralize infection. J. Virol. 2010, 84, 4041–4049. [Google Scholar] [CrossRef] [Green Version]
- Watkinson, R.E.; McEwan, W.A.; Tam, J.C.; Vaysburd, M.; James, L.C. TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized Virus. PLoS Pathog. 2015, 11, e1005253. [Google Scholar] [CrossRef] [Green Version]
Experiment | MOI | BrdU Concentration | Time of BrdU Incorporation | Harvest Time (hpi) | |
---|---|---|---|---|---|
First Dose (hpi) | Second Dose (hpi) | ||||
IF (short) | 5 | 25 µg/mL | 35.5 | --- | 36 |
IF (long 1) | 5 | 25 µg/mL | 8 | --- | 36 |
IF (long 2) | 10 | 25 µg/mL | 12 | --- | 36 |
IF (long 3) | 10 | 25 µg/mL | 17 | --- | 36 |
IF (2 doses) | 50 | 25 µg/mL | 18 | 25 | 36 |
EM-Epon 1 | 5 and 50 1 | --- | --- | --- | 48 |
EM-Epon 2 | 5 | 15 mg/mL | 18 | 25 | 48 |
EM-Epon 3 | 5 | 25 µg/mL | 18 | 25 | 48 |
EM-FS | 50 | 25 µg/mL | 18 | 25 | 48 |
Section | Problem Observed | Possible Reason | Solution |
---|---|---|---|
3.1 | BrdU signal in uninfected but not in infected cells. | DNA replication rate was higher in uninfected than in infected cells. As a result, BrdU was only incorporated into the genome of uninfected cells. | Add BrdU when the viral genome replication rate is higher. |
3.2 | BrdU signal in the periphery of infected cell nuclei, in a pattern similar to that of non-infected cells. | 1. BrdU was added before host genome replication was shut off. 2. MOI was not enough to ensure infection of the majority of the cells at the beginning of the experiment. Labeling reflects genome replication in cells that remained uninfected until a first virus generation was produced. | 1. Add BrdU at later time post infection, when host genome replication is minimized. 2. Increase the MOI to make sure that all cells are infected from the beginning. |
3.2 and 3.3 | Poor signal in infected cells although BrdU was added when viral genome replication peaks. | The BrdU pulse was too long, so the compound was depleted over time. | Add a second dose of BrdU during the infection. |
3.4 | When incubated with BrdU, the typical adenovirus-induced nuclear modifications are not observed in EM sections of infected cells. | BrdU concentration or/and pulse duration affected cell metabolism or infection development. | Test lower BrdU concentration or shorter pulses. |
3.5 | Only for GFP-expressing adenoviruses: poor GFP signal in infected cells after BrdU labeling procedure. | HCl treatment used to denature DNA impaired GFP fluorescence emission. | Use antibody against GFP. |
3.5 | Formvar tearing in the EM grids. | HCl treatment used to denature the DNA damaged the formvar. | Coat the nickel grids by depositing formvar on the dull side rather than on the shiny side. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condezo, G.N.; San Martín, C. Bromodeoxyuridine Labelling to Determine Viral DNA Localization in Fluorescence and Electron Microscopy: The Case of Adenovirus. Viruses 2021, 13, 1863. https://doi.org/10.3390/v13091863
Condezo GN, San Martín C. Bromodeoxyuridine Labelling to Determine Viral DNA Localization in Fluorescence and Electron Microscopy: The Case of Adenovirus. Viruses. 2021; 13(9):1863. https://doi.org/10.3390/v13091863
Chicago/Turabian StyleCondezo, Gabriela N., and Carmen San Martín. 2021. "Bromodeoxyuridine Labelling to Determine Viral DNA Localization in Fluorescence and Electron Microscopy: The Case of Adenovirus" Viruses 13, no. 9: 1863. https://doi.org/10.3390/v13091863
APA StyleCondezo, G. N., & San Martín, C. (2021). Bromodeoxyuridine Labelling to Determine Viral DNA Localization in Fluorescence and Electron Microscopy: The Case of Adenovirus. Viruses, 13(9), 1863. https://doi.org/10.3390/v13091863