In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus
Abstract
:1. Introduction
2. In Vitro Models
2.1. USUV Cellular Tropism
2.2. USUV Neuropathogenesis
2.3. Cell-Intrinsic Immune Response to USUV Infection
2.4. Antiviral Assays
3. In Vivo Models
3.1. Mosquito Infection Models
3.2. Bird Infection Models
3.3. Mammalian Models
3.3.1. Immunocompetent Models
3.3.2. Immune-Deficient Models
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Benzarti, E.; Sarlet, M.; Franssen, M.; Cadar, D.; Schmidt-Chanasit, J.; Rivas, J.; Linden, A.; Desmecht, D.; Garigliany, M. Usutu Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events. Vector Borne Zoonotic Dis. 2019, 20, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Jost, H.; Muller, K.; Fischer, D.; Rinder, M.; Tietze, D.T.; Klaus-Jurgen Danner, N.B.; Skuballa, J.; Hamann, H.-P.; Bosch, S.; et al. Epidemic Spread of Usutu Virus in Southwest Germany in 2011 to 2013 and Monitoring of Wild Birds for Usutu and West Nile Viruses. Vector Borne Zoonotic Dis. 2015, 15, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Kolodziejek, J.; Fragner, K.; Kuhn, R.; Pfeffer, M.; Nowotny, N. Usutu virus activity in Austria, 2001–2002. Microbes Infect. 2003, 5, 1132–1136. [Google Scholar] [CrossRef]
- Savini, G.; Monaco, F.; Terregino, C.; Di Gennaro, A.; Bano, L.; Pinoni, C.; De Nardi, R.; Bonilauri, P.; Pecorari, M.; Di Gialleonardo, L.; et al. Usutu virus in Italy: An emergence or a silent infection? Vet. Microbiol. 2011, 151, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Rijks, J.; Kik, M.; Slaterus, R.; Foppen, R.; Stroo, A.; IJzer, J.; Stahl, J.; Gröne, A.; Koopmans, M.; van der Jeugd, H.; et al. Widespread Usutu virus outbreak in birds in the Netherlands, 2016. Eurosurveillance 2016, 21, 30391. [Google Scholar]
- Benzarti, E.; Garigliany, M.; Hauman, D.; Paternostre, J.; Linden, A.; Franssen, M.; Sarlet, M.; Cassart, D.; Desmecht, D. First evidence of fatal Usutu virus natural infections in an Anatidae, the common scoter (Melanitta nigra). Vector Borne Zoonotic Dis. 2019, 19, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, P.; Kolodziejek, J.; Bakonyi, T.; Brunthaler, R.; Erdélyi, K.; Eissenböck, H.; Nowotny, N. Different dynamics of Usutu virus infections in Austria and Hungary, 2017–2018. Trans. Emerg. Dis. 2020, 67, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Cavrini, F.; Gaibani, P.; Longo, G.; Pierro, A.; Rossini, G.; Bonilauri, P.; Gerunda, G.; Di Benedetto, F.; Pasetto, A.; Girardis, M.; et al. Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August–September 2009. Eurosurveillance 2009, 14, 19448. [Google Scholar]
- Pecorari, M.; Longo, G.; Gennari, W.; Grottola, A.; Sabbatini, A.M.T.; Tagliazucchi, S. First human Case of Usutu Virus neuroinvasive Infection, Italy, August-September 2009. Eurosurveillance 2009, 14, 19446. [Google Scholar]
- Simonin, Y.; Sillam, O.; Carles, M.J.; Gutierrez, S.; Gil, P.; Constant, O.; Martin, M.F.; Girard, G.; Van De Perre, P.; Salinas, S.; et al. Human Usutu Virus Infection with Atypical Neurologic Presentation, Montpellier, France, 2016. Emerg. Infect. Dis. 2018, 24, 875–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagy, A.; Mezei, E.; Nagy, O.; Bakonyi, T.; Csonka, N.; Kaposi, M.; Koroknai, A.; Szomor, K.; Rigó, Z.; Molnár, Z.; et al. Extraordinary increase in West Nile virus cases and first confirmed human Usutu virus infection in Hungary, 2018. Eurosurveillance 2019, 24, 1900038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roby, J.A.; Pijlman, G.P.; Wilusz, J.; Khromykh, A.A. Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses. Viruses 2014, 6, 404–427. [Google Scholar] [CrossRef]
- Roby, J.A.; Setoh, Y.; Hall, R.; Khromykh, A. Post-translational regulation and modifications of flavivirus structural proteins. J. Gen. Virol. 2015, 96, 1551–1569. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, Z.; Wang, M.; Cheng, A. Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses 2017, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Amberg, S.M.; Chambers, T.J.; Rice, C.M. Cleavage at a novel site in the NS4A region by the yellow fever virus NS2B-3 proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J. Virol. 1993, 67, 2327–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, D.; Jöst, H.; Wink, M.; Börstler, J.; Bosch, S.; Garigliany, M.M.; Jöst, A.; Czajka, C.; Lühken, R.; Ziegler, U.; et al. Reconstruction of the evolutionary history and dispersal of Usutu virus, a neglected emerging arbovirus in Europe and Africa. MBio 2016, 7, e01938-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.; Simpson, D.; Haddow, A.; Knight, E. The isolation of West Nile virus from man and of Usutu virus from the bird-biting mosquito Mansonia aurites (Theobald) in the Entebbe Area of Uganda. Ann. Trop. Med. Parasitol. 1964, 58, 367–374. [Google Scholar] [CrossRef]
- Woodall, J. The viruses isolated from arthropods at the East African virus research institute in the 26 years ending December 1963. Proc. E. Afr. Acad. 1964, 2, 141–146. [Google Scholar]
- Hassine, T.B.; De Massis, F.; Calistri, P.; Savini, G.; Mohamed, B.B.; Ranen, A.; Di Gennaro, A. First Detection of Co-circulation of West Nile and Usutu Viruses in Equids in the South-west of Tunisia. Transbound. Emerg. Dis. 2014, 61, 385–389. [Google Scholar] [CrossRef]
- Durand, B.; Haskouri, H.; Lowenski, S.; Vachiery, N.; Beck, C. Seroprevalence of West Nile and Usutu viruses in military working horses and dogs, Morocco, 2012: Dog as an alternative WNV sentinel species? Epidemiol. Infect. 2016, 144, 1857–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolay, B.; Diallo, M.; Bouh Boye, C.S.; Alpha Sall, A. Usutu Virus in Africa. Vector Borne Zoonotic Dis. 2011, 11, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Medrouh, B.; Lafri, I.; Beck, C.; Leulmi, H.; Akkou, M.; Abbad, L.; Lafri, M.; Bitam, I.; Lecollinet, S. First serological evidence of West Nile virus infection in wild birds in Northern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101415. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Bakonyi, T.; Rossi, G.; Mani, P.; Nowotny, N. Usutu Virus, Italy, 1996. Emerg. Infect. Dis. 2013, 19, 274–277. [Google Scholar] [CrossRef]
- Buckley, A.; Dawson, A.; Moss, S.R.; Hinsley, S.A.; Bellamy, P.E.; Gould, E.A.; Buckley, A. Serological evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the UK. J. Gen. Virol. 2003, 84, 2807–2817. [Google Scholar] [CrossRef]
- Hubálek, Z.; Halouzka, J.; Jur, Z. Serologic Survey of Birds for West Nile Flavivirus in Southern Moravia (Czech Republic). Vector Borne Zoo Dis. 2008, 8, 659–666. [Google Scholar]
- Bakonyi, T.; Erdélyi, K.; Ursu, K.; Ferenczi, E.; Csörgo, T.; Lussy, H.; Chvala, S.; Bukovsky, C.; Meister, T.; Weissenböck, H.; et al. Emergence of Usutu Virus in Hungary. J. Clin. Microbiol. 2007, 45, 3870–3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubálek, Z.; Wegner, E.; Halouzka, J.; Tryjanowski, P.; Jerzak, L.; Sikutová, S.; Rudolf, I.; Kruszewicz, A.; Jaworski, Z.; Wlodarczyk, R. Serologic Survey of Potential Vertebrate Hosts for West Nile Virus in Poland. Viral Immunol. 2008, 21, 247–253. [Google Scholar]
- Busquets, N.; Alba, A.; Allepuz, A.; Aranda, C.; Núñez, J.I. Usutu Virus Sequences in Culex pipiens (Diptera: Culicidae), Spain. Emerg. Infect. Dis. 2008, 14, 2006–2008. [Google Scholar] [CrossRef]
- Steinmetz, H.W.; Bakonyi, T.; Weissenböck, H.; Hatt, J.M.; Eulenberger, U.; Robert, N.; Hoop, R.; Nowotny, N. Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland-Genomic and pathologic comparison to other central European outbreaks. Vet. Microbiol. 2011, 148, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Lupulovic, D.; Martı, M.A.; Lazic, S.; Alonso-padilla, J. First Serological Evidence of West Nile Virus Activity in Horses in Serbia. Vector Borne Zoonotic Dis. 2011, 11, 1303–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaintoutis, S.C.; Dovas, C.I.; Papanastassopoulou, M.; Gewehr, S.; Danis, K.; Beck, C.; Lecollinet, S.; Antalis, V.; Kalaitzopoulou, S. Evaluation of a West Nile virus surveillance and early warning system in Greece, based on domestic pigeons. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Jöst, H.; Bialonski, A.; Maus, D.; Sambri, V.; Eiden, M.; Groschup, M.H.; Günther, S.; Becker, N.; Schmidt-chanasit, J. Isolation of Usutu Virus in Germany. Am. J. Trop. Med. Hyg. 2011, 85, 551–553. [Google Scholar] [CrossRef] [Green Version]
- Csank, T.; Drzewnioková, P.; Korytár, L.; Major, P.; Gyuranecz, M.; Pistl, J.; Bakonyi, T. A Serosurvey of Flavivirus Infection in Horses and Birds in Slovakia. Vector Borne Zoonotic Dis. 2018, 18, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Garigliany, M.M.; Marlier, D.; Tenner-Racz, K.; Eiden, M.; Cassart, D.; Gandar, F.; Beer, M.; Schmidt-Chanasit, J.; Desmecht, D. Detection of Usutu Virus in a Bullfinch (Pyrrhula pyrrhula) and a great spotted Woodpecker (Dendrocopos major) in North-west Europe. Vet. J. 2014, 199, 191–193. [Google Scholar] [CrossRef]
- Lecollinet, S.; Blanchard, Y.; Manson, C.; Lowenski, S.; Laloy, E.; Quenault, H.; Touzain, F.; Lucas, P.; Eraud, C.; Bahuon, C.; et al. Dual Emergence of Usutu Virus in Common Blackbirds, Eastern France, 2015. Emerg. Infect. Dis. 2016, 22, 2225–2227. [Google Scholar] [CrossRef] [Green Version]
- Nikolay, B. A review of West Nile and Usutu virus co-circulation in Europe: How much do transmission cycles overlap? Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Eiden, M.; Gil, P.; Ziegler, U.; Rakotoarivony, I.; Marie, A.; Frances, B.; Ambert, G.L.; Simonin, Y.; Foulongne, V.; Groschup, M.H.; et al. Emergence of two Usutu virus lineages in Culex pipiens mosquitoes in the Camargue, France, 2015. Infect. Genet. Evol. 2018, 61, 151–154. [Google Scholar] [CrossRef]
- Kemenesi, G.; Buzás, D.; Zana, B.; Kurucz, K.; Krtinic, B.; Kepner, A.; Földes, F.; Jakab, F. First genetic characterization of Usutu virus from Culex pipiens mosquitoes Serbia, 2014. Infect. Genet. Evol. 2018, 63, 58–61. [Google Scholar] [CrossRef]
- Mancini, G.; Montarsi, F.; Calzolari, M.; Capelli, G.; Dottori, M.; Ravagnan, S.; Lelli, D.; Chiari, M.; Santilli, A.; Quaglia, M.; et al. Mosquito species involved in the circulation of West Nile and Usutu viruses in Italy. Vet. Ital. 2017, 53, 97–110. [Google Scholar]
- Benzarti, E.; Linden, A.; Desmecht, D.; Garigliany, M. Mosquito-borne epornitic flaviviruses: An update and review. J. Gen. Virol. 2019, 100, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Chvala, S.; Kolodziejek, J.; Nowotny, N.; Weissenbo, H. Pathology and Viral Distribution in Fatal Usutu Virus Infections of Birds from the 2001 and 2002 Outbreaks in Austria. J. Comp. Path. 2004, 131, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Garigliany, M.; Linden, A.; Gilliau, G.; Levy, E.; Sarlet, M.; Franssen, M.; Benzarti, E.; Derouaux, A.; Francis, F.; Desmecht, D. Usutu Virus, Belgium, 2016. Infect. Genet. Evol. 2017, 48, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Fast, C.; Eiden, M.; Bock, S.; Schulze, C.; Hoeper, D.; Ochs, A.; Schlieben, P.; Keller, M.; Zielke, D.E.; et al. Evidence for an independent third Usutu virus introduction into Germany. Vet. Microbiol. 2016, 192, 60–66. [Google Scholar] [CrossRef]
- Becker, N.; Jost, H.; Ziegler, U.; Eiden, M.; Ho, D.; Emmerich, P.; Becker, N.; Jo, H.; Gabriel, M.; Fichet-calvet, E.; et al. Epizootic Emergence of Usutu Virus in Wild and Captive Birds in Germany. PLoS ONE 2012, 7, e32604. [Google Scholar] [CrossRef]
- Diagne, M.M.; Henriette, M.; Ndione, D.; Di Paola, N.; Fall, G.; Bedekelabou, P.; Mback, P.; Faye, O. Usutu Virus Isolated from Rodents in Senegal. Viruses 2019, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.I.; Williams, M.C.; O’Sullivan, J.P.; Cunningham, J.C.; Mutere, F.A. Studies on arboviruses and bats (Chiroptera) in East Africa. II. Isolation and haemagglutination-inhibition studies on bats collected in Kenya and throughout Uganda. Ann. Trop. Med. Parasitol. 1968, 62, 432–440. [Google Scholar] [CrossRef]
- Cadar, D.; Becker, N.; de Mendonca Campos, R.; Jöst, H.; Schmidt-Chanasit, J. Usutu Virus in Bats, Germany, 2013. Emerg. Infect. Dis. 2014, 20, 1771–1772. [Google Scholar] [CrossRef]
- Vanhomwegen, J.; Beck, C.; Desprès, P.; Figuerola, A.; Garcia, R.; Lecollinet, S.; Lopez-Roig, M.; Manuguerra, J.-C.; Serra-Cobo, J. Circulation of Zoonotic Arboviruses in Equine Populations of Mallorca Island (Spain). Vector Borne Zoonotic Dis. 2017, 17, 340–346. [Google Scholar] [CrossRef]
- Bażanów, B.; Jansen van Vuren, P.; Szymański, P.; Stygar, D.; Frącka, A.; Twardoń, J.; Kozdrowski, R.; Pawęska, J.T. A survey on West Nile and Usutu viruses in horses and birds in Poland. Viruses 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Barbic, L.; Gjenero-margan, I.; Vilibic-cavlek, T.; Listes, E.; Stevanovic, V.; Ljubin-sternak, S.; Pem-novosel, I.; Listes, I.; Mlinaric-galinovic, G.; Di Gennaro, A.; et al. Demonstration of Usutu Virus Antibodies in Horses, Croatia. Vector Borne Zoonotic Dis. 2013, 13, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Romero, E.; Lupulović, D.; Merino-Ramos, T.; Blázquez, A.; Lazić, G.; Lazić, S.; Saiz, J.; Petrović, T. West Nile virus serosurveillance in pigs, wild boars, and roe deer in Serbia. Vet. Microbiol. 2015, 176, 365–369. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Paniagua, J.; Gutiérrez-guzmán, A.V.; Lecollinet, S.; Boadella, M.; Arenas-Montes, A.; Cano-Terriza, D.; Lowenski, S.; Gortázar, C.; Höfle, U. Spatio-temporal trends and risk factors affecting West Nile virus and related flavivirus exposure in Spanish wild ruminants. BMC Vet. Res. 2016, 12, 249. [Google Scholar]
- Romeo, C.; Ferrari, N.; Caballero, J.; Luzzago, C. Are tree squirrels involved in the circulation of flaviviruses in Italy? Transbound. Emerg. Dis. 2018, 65, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Gómez, J.; Cano-Terriza, D.; Lecollinet, S.; Carbonell, M.D.; Martínez-Valverde, R.; Martínez-Nevado, E.; García-Párraga, D.; Lowenski, S.; García-Bocanegra, I. Evidence of exposure to zoonotic flaviruses in zoo mammals in Spain and their potential role as sentinel species. Vet. Microbiol. 2020, 247, 108763. [Google Scholar] [CrossRef]
- Csank, T.; Pikalík, M.; Majláthová, V.; Majláth, I.; Pistl, J. Detection of neutralizing antibodies against Usutu virus in green lizards (Lacerta viridis). In Proceedings of the Joint Czechoslovak Virology Conference 2019 and 1st SK-AT Structural Virology Meeting, Bratislava, Slovakia, 13–15 February 2019; pp. 48–49. [Google Scholar]
- Allering, L.; Jöst, H.; Emmerich, P.; Günther, S.; Lattwein, E.; Schmidt, M.; Seifried, E.; Sambri, V.; Hourfar, K.; Medizinische, E.; et al. Detection of Usutu virus infection in a healthy blood donor from south-west Germany, 2012. Eurosurveillance 2012, 17, 20341. [Google Scholar]
- Cvjetković, I.H.; Petrović, T.; Petrić, D.; Cvjetković, D.; Kovačević, G.; Radovanov, J.; Jovanović Galović, A.; Patić, A.; Nikolić, N.; Mikić, S.S.; et al. Seroprevalence of mosquito-born and tick-born microorganisms in human population of South Backa District. Arh. Vet. Med. 2016, 9, 23–30. [Google Scholar]
- Gaibani, P.; Pierro, A.; Alicino, R.; Rossini, G.; Cavrini, F.; Landini, M.P.; Sambri, V. Detection of Usutu-Virus-Specific IgG in Blood Donors from Northern Italy. Vector Borne Zoonotic Dis. 2012, 12, 431–433. [Google Scholar] [CrossRef]
- Grottola, A.; Marcacci, M.; Tagliazucchi, S.; Gennari, W.; Gennaro, D.; Orsini, M.; Marchegiano, P.; Meacci, M.; Rumpianesi, F.; Lorusso, A.; et al. Usutu virus infections in humans: A retrospective analysis in the municipality of Modena, Italy. Clin. Microbiol. Infect. 2016. [Google Scholar] [CrossRef] [Green Version]
- Percivalle, E.; Cassaniti, I.; Sarasini, A.; Rovida, F.; Adzasehoun, K.M.G.; Colombini, I.; Isernia, P.; Cuppari, I.; Baldanti, F. West nile or usutu virus? A three-year follow-up of humoral and cellular response in a group of asymptomatic blood donors. Viruses 2020, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Percivalle, E.; Sassera, D.; Rovida, F.; Isernia, P.; Fabbi, M. Usutu Virus Antibodies in Blood Donors. Vector Borne Zoonotic Dis. 2017, 17, 658–661. [Google Scholar] [CrossRef] [PubMed]
- Pierro, A.; Gaibani, P.; Spadafora, C.; Ruggeri, D.; Randi, V.; Parenti, S.; Finarelli, A.C.; Rossini, G.; Landini, M.P.; Sambri, V. Detection of specific antibodies against West Nile and Usutu viruses in healthy blood donors in northern Italy, 2010 – 2011. Clin. Microbiol. Infect. 2013, 19, E451–E453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaaijer, H.L.; Slot, E.; Molier, M.; Reusken, C.B.E.M.; Koppelman, M.H.G.M. Usutu virus infection in Dutch blood donors. Transfusion 2019, 59, 2931–2937. [Google Scholar] [CrossRef] [PubMed]
- Santini, M.; Vilibic-Cavlek, T.; Barsic, B.; Barbic, L.; Savic, V.; Stevanovic, V.; Listes, E.; Di Gennaro, A.; Savini, G. First cases of human Usutu virus neuroinvasive infection in Croatia, August–September 2013: Clinical and laboratory features. J. Neurovirol. 2014, 21, 92–97. [Google Scholar] [CrossRef]
- Clé, M.; Salinas, S.; Lecollinet, S.; Beck, C.; Gutierrez, S.; Baldet, T.; Vande Perre, P.; Foulongne, V.; Simonin, Y.; Usutu, L. Le virus Usutu: La menace fantôme. Med. Sci. 2018, 34, 709–716. [Google Scholar]
- Bal-Price, A.; Coecke, S. Guidance on Good Cell Culture Practice (GCCP). Cell Cult. Tech. 2011, 56, 1–25. [Google Scholar]
- Pamies, D.; Hartung, T. 21st Century Cell Culture for 21st Century Toxicology. Chem. Res. Toxicol. 2017, 30, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Pena, L.J.; Guarines, K.M.; Duarte Silva, A.J.; Sales Leal, L.R.; Félix, D.M.; Silva, A.; De Oliveira, S.A.; Junqueira Ayres, C.F.; Silva JúNior, A.; De Freitas, A.C. In vitro and in vivo models for studying Zika virus biology. J. Gen. Virol. 2018, 99, 1529–1550. [Google Scholar] [CrossRef]
- Chesnut, M.; Muñoz, L.S.; Harris, G.; Freeman, D.; Gama, L.; Pardo, C.A.; Pamies, D.; Hirsch, A.J. In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Front. Cell. Infect. Microbiol. 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Benzarti, E.; Rivas, J.; Sarlet, M.; Franssen, M.; Moula, N. Usutu Virus Infection of Embryonated Chicken Eggs and a Chicken Embryo-Derived Primary Cell Line. Viruses 2020, 12, 531. [Google Scholar] [CrossRef]
- DeMadrid, A.N.A.T.; Porterfield, J.S. A Simple Micro-culture Method for the Study of Group B Arboviruses *. Bull. Wld Hlth Org. 1969, 40, 113–121. [Google Scholar]
- Bakonyi, T.; Lussy, H.; Weissenböck, H.; Hornyák, Á.; Nowotny, N. In Vitro Host-Cell Susceptibility to Usutu Virus. Emerg. Infect. Dis. 2005, 11, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Matskevich, A.A.; Jung, J.S.; Schümann, M.; Cascallo, M.; Moelling, K. Vero cells as a model to study the effects of adenoviral gene delivery vectors on the RNAi system in context of viral infection. J. Innate Immun. 2009, 1, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, A.; Escribano-Romero, E.; Merino-Ramos, T.; Saiz, J.-C.; Martín-Acebes, M.A. Infection with Usutu Virus Induces an Autophagic Response in Mammalian Cells. PLoS Negl. Trop. Dis. 2013, 7, e2509. [Google Scholar]
- Sempere, R.N.; Arias, A. Establishment of a Cell Culture Model of Persistent Flaviviral Infection: Usutu Virus Shows Sustained Replication during Passages and Resistance to Extinction by Antiviral Nucleosides. Viruses 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
- Barr, K.L.; Anderson, B.D.; Prakoso, D.; Long, M.T. Working with Zika and Usutu Viruses In Vitro. PLoS Negl. Trop. Dis. 2016, 10, e0004931. [Google Scholar] [CrossRef] [Green Version]
- Bassi, M.R.; Sempere, N.; Meyn, P.; Polacek, C. Extinction of Zika Virus and Usutu Virus by Lethal Mutagenesis Reveals Different Patterns of Sensitivity to Three Mutagenic Drugs. Antimicrob. Agents Chemother. 2018, 62, e00380-18. [Google Scholar] [CrossRef] [Green Version]
- Segura, N.A.; Sharma, S.; Neyts, J.; Kaptein, S.J.F. Favipiravir inhibits in vitro Usutu virus replication and delays disease progression in an infection model in mice. Antivir. Res 2018, 160, 137–142. [Google Scholar] [CrossRef]
- Merino-Ramos, T.; Vázquez-Calvo, Á; Casas, J.; Sobrino, F.; Saiz, J. Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase. Antimicrob. Agents Chemother. 2016, 60, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Essbauer, S.S.; Krautkrämer, E.; Herzog, S.; Pfeffer, M. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses. Virol. J. 2011, 8, 339. [Google Scholar] [CrossRef] [Green Version]
- Salinas, S.; Constant, O.; Desmetz, C.; Barthelemy, J.; Lemaitre, J.M.; Milhavet, O.; Nagot, N.; Foulongne, V.; Perrin, F.E.; Saiz, J.C.; et al. Deleterious effect of Usutu virus on human neural cells. PLoS Negl. Trop. Dis. 2017, 11, e0005913. [Google Scholar] [CrossRef] [PubMed]
- García-Nicolás, O.; Lewandowska, M.; Ricklin, M.E.; Summerfield, A. Monocyte-Derived Dendritic Cells as Model to Evaluate Species Tropism of Mosquito-Borne Flaviviruses. Front. Cell. Infect. Microbiol. 2019, 9, 1–13. [Google Scholar]
- Binder, F.; Lenk, M.; Weber, S.; Stoek, F.; Dill, V.; Reiche, S.; Riebe, R.; Wernike, K.; Ziegler, U.; Adler, H.; et al. Common vole (Microtus arvalis) and bank vole (Myodes glareolus) derived permanent cell lines differ in their susceptibility and replication kinetics of animal and zoonotic viruses. J. Virol. Methods 2019, 113729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clé, M.; Barthelemy, J.; Desmetz, C.; Foulongne, V.; Tuaillon, E.; Erkilic, N.; Kalatzis, V.; Lapeyre, L.; Bollore, K.; Pirot, N.; et al. Study of Usutu virus neuropathogenicity in mice and human cellular models. PLoS Negl. Trop. Dis. 2020, 14, e0008223. [Google Scholar]
- Scagnolari, C.; Caputo, B.; Trombetti, S.; Spano, L.; Villari, P.; Cacciotti, G.; Solda, A.; Torre, A.; Nowotny, N.; Antonelli, G. Usutu virus growth in human cell lines: Induction of and sensitivity to type I and III interferons. J. Gen. Virol. 2013, 94, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Cacciotti, G.; Caputo, B.; Selvaggi, C.; Vitiello, L.; Diallo, D.; Ceianu, C.; Antonelli, G.; Nowotny, N.; Scagnolari, C. Variation in interferon sensitivity and induction between Usutu and West Nile (lineages 1 and 2) viruses. Virology 2015, 485, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Riccetti, S.; Sinigaglia, A.; Desole, G.; Nowotny, N.; Trevisan, M.; Barzon, L. Modelling West Nile Virus and Usutu Virus Pathogenicity in Human Neural Stem Cells. Viruses 2020, 12, 882. [Google Scholar] [CrossRef]
- Vielle, N.J.; García-Nicolás, O.; Oliveira Esteves, B.I.; Brügger, M.; Summerfield, A.; Alves, M.P. The human upper respiratory tract epithelium is susceptible to flaviviruses. Front. Microbiol. 2019, 10, 811. [Google Scholar] [CrossRef]
- Gaibani, P.; Cavrini, F.; Gould, E.A.; Rossini, G.; Pierro, A.; Landini, P.; Sambri, V. Comparative Genomic and Phylogenetic Analysis of the First Usutu Virus Isolate from a Human Patient Presenting with Neurological Symptoms. PLoS ONE 2013, 8, e64761. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Koraka, P.; Osterhaus, A.D.M.E.; Martina, B.E.E. West Nile Virus: Immunity and Pathogenesis. Viruses 2011, 3, 811–828. [Google Scholar] [CrossRef]
- Slon Campos, J.L.; Mongkolsapaya, J.; Screaton, G.R. The immune response against flaviviruses. Nat. Immunol. 2018, 19, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Hussmann, K.L.; Samuel, M.A.; Kim, K.S.; Diamond, M.S.; Fredericksen, L. Differential Replication of Pathogenic and Nonpathogenic Strains of West Nile Virus within Astrocytes. J. Virol. 2013, 87, 2814–2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, N.J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 2002, 200, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Cedillo-Barrón, L.; García-Cordero, J.; Shrivastava, G.; Carrillo-Halfon, S.; León-Juárez, M.; Arriaga, J.B.; Valenzuela, P.L.; Gutiérrez Castañeda, B. Introduction The Role of Flaviviral Proteins in the Induction of Innate Immunity. In Virus Protein and Nucleoprotein Complexes; Harris, J.R., Bhella, D., Eds.; Springer: New York, NY, USA, 2018; Volume 88, pp. 305–328. ISBN 978-981-10-8455-3. [Google Scholar]
- McIntosh, B.M. Usutu (SA Ar 1776), nouvel arbovirus du groupe B. Int. Cat. Arboviruses 1985, 3, 1059–1060. [Google Scholar]
- Clé, M.; Beck, C.; Salinas, S.; Lecollinet, S.; Gutierrez, S.; Van De Perre, P.; Baldet, T.; Foulongne, V.; Simonin, Y. Usutu virus: A new threat? Epidemiol. Infect. 2019, 147, e232. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, I.; Bakonyi, T.; Mendel, J.; Pe, J.; Betá, L.; Bla, H.; Venclíková, K.; Straková, P.; Nowotny, N.; Hubálek, Z. Co-circulation of Usutu Virus and West Nile Virus in a reed Bed Ccosystem. Parasites Vectors 2015, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Calzolari, M.; Gaibani, P.; Bellini, R.; Defilippo, F.; Pierro, A.; Albieri, A.; Maioli, G.; Luppi, A.; Rossini, G.; Balzani, A.; et al. Mosquito, Bird and Human Surveillance of West Nile and Usutu Viruses in Emilia-Romagna Region ( Italy ) in 2010. PLoS ONE 2012, 7, e38058. [Google Scholar] [CrossRef] [Green Version]
- Abbo, S.R.; Vogels, C.B.F.; Visser, T.M.; Geertsema, C.; Van Oers, M.M.; Koenraadt, C.J.M.; Pijlman, G.P. Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva. Viruses 2020, 12, 659. [Google Scholar] [CrossRef]
- Fros, J.J.; Miesen, P.; Vogels, C.B.; Gaibani, P.; Sambri, V.; Martina, B.E.; Koenraadt, C.J.; van Rij, R.P.; Vlak, J.M.; Takken, W.; et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Heal. 2015, 1, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.L.; Huang, Y.J.S.; Lyons, A.C.; Alto, B.W.; Unlu, I.; Higgs, S.; Vanlandingham, D.L. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl. Trop. Dis. 2018, 12, e0006732. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Triana, L.M.; De Marco, M.F.; Mansfield, K.L.; Thorne, L.; Lumley, S.; Marston, D.; Fooks, A.A.; Johnson, N. Assessment of vector competence of UK mosquitoes for Usutu virus of African origin. Parasites Vectors 2018, 11, 381. [Google Scholar]
- Nikolay, B.; Diallo, M.; Faye, O.; Boye, C.S.; Sall, A.A. Vector Competence of Culex neavei (Diptera: Culicidae) for Usutu Virus. Am. J. Trop. Med. Hyg 2012, 86, 993–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abma-Henkens, M.H.C.; Geertsema, C.; Vogels, C.B.F.; Marion, P.; Koopmans, G.; Reusken, C.B.E.M.; Hall-Mendelin, S.; Hall, R.A.; Van Oers, M.; Koenraadt, C.J.M.; et al. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl. Trop. Dis. 2020, 14, e0008217. [Google Scholar]
- Puggioli, A.; Bonilauri, P.; Calzolari, M.; Lelli, D.; Carrieri, M.; Urbanelli, S.; Pudar, D.; Bellini, R. Does Aedes albopictus (Diptera: Culicidae) play any role in Usutu virus transmission in Northern Italy? Experimental oral infection and field evidences. Acta Trop. 2017, 172, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Camp, J.V.; Kolodziejek, J.; Nowotny, N. Targeted surveillance reveals native and invasive mosquito species infected with Usutu virus. Parasites Vectors 2019, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Moskalyk, L.A.; Oo, M.M.; Jacobs-Lorena, M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol. Biol. 1996, 5, 261–268. [Google Scholar] [CrossRef]
- Chvala, S.; Bakonyi, T.; Hackl, R.; Hess, M.; Nowotny, N.; Weissenböck, H.; Bakonyi, T.; Hackl, R.; Hess, M.; Nowotny, N.; et al. Limited pathogenicity of Usutu virus for the domestic chicken (Gallus domesticus). Avian Pathol 2005, 34, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Benzarti, E.; Rivas, J.; Sarlet, M.; Franssen, M.; Desmecht, D.; Schmidt-Chanasit, J.; Savini, G.; Lorusso, A.; Van Laere, A.-S.; Garigliany, M.-M. Experimental Usutu Virus Infection in Domestic Canaries Serinus canaria. Viruses 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Chvala, S.; Bakonyi, T.; Hackl, R.; Hess, M.; Nowotny, N.; Weissenböck, H. Limited Pathogenicity of Usutu Virus for the Domestic Goose (Anser anser f. domestica) Following Experimental Inoculation. J. Vet. Med. 2006, 53, 171–175. [Google Scholar] [CrossRef]
- Gamino, V.; Escribano-Romero, E.; Gutierrez-Guzman, A.V.; Blazquez, A.B.; Saiz, J.C.; Hofle, U. Oculopathologic Findings in Flavivirus-Infected Gallinaceous Birds. Vet. Pathol. 2014, 51, 1113–1116. [Google Scholar] [CrossRef] [Green Version]
- Pauli, A.M.; Cruz-Martinez, L.A.; Ponder, J.B.; Redig, P.T.; Glaser, A.L.; Klauss, G.; Schoster, J.V. Ophthalmologic and oculopathologic finding in red-tailed hawks and Cooper’s hawks with naturally acquired West Nile virus infection. J. Am. Vet. Med. Assoc. 2007, 231, 1240–1248. [Google Scholar] [CrossRef]
- King, N.J.C.; Getts, D.R.; Getts, M.T.; Rana, S.; Shrestha, B.; Kesson, A.M. Immunopathology of flavivirus infections. Immunol. Cell Biol. 2007, 85, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Komar, N.; Langevin, S.; Hinten, S.; Nemeth, N.; Edwards, E.; Hettler, D.; Davis, B.; Bowen, R.; Bunning, M. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus. Emerg. Infect. Dis. 2003, 9, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.I.H.; Sullivan, J.P.O. Studies on arboviruses and bats (Chiroptera) in East Africa I.-Experimental infection of bats and virus transmission attempts in Aedes (Stegomyia) aegypti (Linnaeus). Ann. Trop. Med. Parasitol. 1968, 62, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Arbovirus catalog. Available online: https://wwwn.cdc.gov/Arbocat/VirusDetails.aspx?ID=503&SID=13 (accessed on 10 August 2020).
- Benzarti, E.; Sarlet, M.; Franssen, M.; Desmecht, D.; Schmidt-chanasit, J.; Garigliany, M. New Insights into the Susceptibility of Immunocompetent Mice to Usutu Virus. Viruses 2020, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Martín-Acebes, M.A.; Blázqueza, A.-B.; Canas-Arranz, R.; Vázquez-Calvo, Á.; Merino-Ramos, T.; Escribano-Romero, E.; Sobrino, F.; Saiz, J. A recombinant DNA vaccine protects mice deficient in the alpha/ beta interferon receptor against lethal challenge with Usutu virus. Vaccine 2016, 34, 2066–2073. [Google Scholar] [CrossRef]
- Blázquez, A.; Escribano-Romero, E.; Martín-acebes, M.A.; Petrovic, T.; Saiz, J. Limited susceptibility of mice to Usutu virus (USUV) infection and induction of flavivirus cross-protective immunity. Virology 2015, 482, 67–71. [Google Scholar]
- Merino-Ramos, T.; Blázquez, A.-B.; Escribano-Romero, E.; Cañas-Arranz, R.; Sobrino, F.; Saiz, J.; Martín-Acebes, M. Protection of a Single Dose West Nile Virus Recombinant Subviral Particle Vaccine against Lineage 1 or 2 Strains and Analysis of the Cross-Reactivity with Usutu Virus. PLoS ONE 2014, 9, e108056. [Google Scholar] [CrossRef] [Green Version]
- Weissenbock, H.; Bakonyi, T.; Chvala, S.; Nowotny, N. Experimental Usutu virus infection of suckling mice causes neuronal and glial cell apoptosis and demyelination. Acta Neuropathol. 2004, 108, 453–460. [Google Scholar] [CrossRef]
- Kimura, T.; Sasaki, M.; Okumura, M.; Kim, E.; Sawa, H. Flavivirus encephalitis: Pathological aspects of mouse and other animal models. Vet. Pathol. 2010, 47, 806–818. [Google Scholar] [CrossRef]
- Aberle, S.W.; Kolodziejek, J.; Jungbauer, C.; Stiasny, K.; Aberle, J.H.; Zoufaly, A.; Hourfar, K.; Weidner, L.; Nowotny, N. Increase in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveillance 2018, 23, 1800545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Cells | USUV Strain (GenBank) | Infection | Cytopathic Effects | Refs | ||
---|---|---|---|---|---|---|---|
Armadillo Dasypus novemcinctus | Trachea fibroblasts DNl.Tr, ATCC: CRL-6009 | AY453412 | + | - | [77] | ||
Bat Tadarida brasiliensis | Lung epithelial cells Tb 1 Lu *, ATCC: CCL-88 | AY453412 | + | - | [77] | ||
Birds | Chicken Gallus gallus domesticus | Chicken embryo fibroblasts | Primary cell culture | AY453411 | - | - | [73] |
DF-1, ATCC: CRL-12203 | AY453412 | + | - | [77] | |||
Chorioallantoic membrane primary cells | AY453411, MK230892 MK230891, KX555624 | + | + | [71] | |||
Goose Anser anser domesticus | Primary culture of embryo fibroblasts GEF | AY453411 | + | + | [73] | ||
Cat Felis catus | Kidney epithelial cell line CRFK | ATCC: CCL-94 | AY453412 | + | + | [77] | |
- | AY453411 | + | + | [73] | |||
Cow Bos taurus | Turbinate cells BT, ATCC: CRL-1390 | AY453412 | + | - | [77] | ||
Madin-Darby bovine kidney cell line MDBK, ATCC: CCL-22 | AY453411 | + | - | [73] | |||
Deer Odocoileus hemionus | Kidney fibroblasts OHH1.K, ATCC: CRL-6193 | AY453412 | + | + | [77] | ||
Dog Canis familiaris | Madin-Darby kidney epithelial cells MDCK | ATCC: CCL-34 | AY453412 | + | - | [77] | |
- | AY453411 | + | - | [73] | |||
Kidney epithelial cell line DK*, ATCC: CRL-6247 | AY453411 | + | - | [73] | |||
Fox Urocyon cineroargenteus | Lung fibroblasts FoLu, ATCC: CCL-168 | AY453412 | + | + | [77] | ||
Hamster Mesocricetus auratus | Baby hamster kidney fibroblasts BHK-21 (ATCC: CCL-10) and BF cell lines | AY453411 | + | - | [73] | ||
Horse Equus caballus | Dermal fibroblasts cell line | ED | AY453411 | + | - | [73] | |
E.Derm ATCC: CCL-57 | AY453412 | + | + | [77] | |||
Primary horse kidney cells EqK | AY453411 | + | - | [73] | |||
Mink Neovison vison | Lung epithelial cells Mv 1 Lu, ATCC: CCL-64 | AY453412 | + | + | [77] | ||
Monkey | Cercopithecus aethiops | Kidney epithelial cell line Vero ** | - | AY453412, AY453411 | + | + | [75] |
- | LT854220 | + | + | [11] | |||
- | AY453411 | + | + | [78] | |||
Persistently infected | AY453411 | + | - | [76] | |||
Vero E6, ATCC: CRL-1586 | KJ438730 | + | + | [79] | |||
- | AY453412 | + | + | [80] | |||
B4 | 0679/2006 | + | + | [81] | |||
Macaca mulatta | Kidney epithelial cells LLC-MK2, ATCC: CCL-7 | AY453412 | + | + | [77] | ||
Mouse Mus musculus | Primary cultures of astrocytes, microglial cells, and neurons | AY453411 | + | + | [82] | ||
Mosquito Aedes albopictus | Larvae C6/36 cell line ATCC: CRL-1660 | JF330418 (Germany, Cx. p.) AY453412, KC754955 MH727238, MH727239 MH727241, MH727240 MH727242 | + | + | [33,46] | ||
Opossum Didelphis virginiana | Kidney epithelial cells OK, ATCC: CRL-1840 | AY453412 | + | + | [77] | ||
Pig Sus scrofa | Primary monocyte-derived dendritic cells MoDC * | AY453412 | + | + | [83] | ||
Epithelial kidney cell line PK-15, ATCC: CCL-33 | AY453412 AY453411 | + | + | [72,73,77] | |||
Rabbit | Oryctolagus cuniculus | Kidney epithelial cell line RK-13, ATCC: CCL-37 | AY453411 | + | - | [73] | |
Sylvilagus floridanus | Skin epidermis cells Sf 1 Ep, ATCC: CCL-68 | AY453412 | + | + | [77] | ||
Raccoon Procyon lotor | Uterus fibroblasts Pl 1 Ut, ATCC: CCL-74 | AY453412 | + | - | [77] | ||
Rat Rattus norvegicus | Brain glial tumor cell line C6, ATCC: CCL-107 | AY453411 | + | - | [73] | ||
Turtle Terrapene carolina | Epithelial heart cell line TH-1, ATCC: CCL-50 | AY453411 | + | - | [73] | ||
Vole | Myodes glareolus | Epithelial kidney cell line BVK168, CCLV-RIE 1313 | 0679/2006 | + | + | [81] | |
HE599647 | + | + | [84] | ||||
Lung cell line MGLU-2-R, CCLV-RIE 1304 | HE599647 | - | - | ||||
Microtus arvalis | Kidney cell line FMN-R, CCLV-RIE. 1102 | + | - | ||||
Brain cell line FMG-R, CCLV-RIE 1129 | - | - | |||||
Woodchuck Marmota monax | Liver epithelial cell line WCH-17 *, ATCC: CRL-2082 | AY453412 | + | - | [77] |
Cell Lines | USUV Strain (GenBank) | Infection | Cytopathic Effects | Other Findings | Ref | |
---|---|---|---|---|---|---|
Primary astrocytes | AY453411 | + | - | USUV decreases cellular proliferation without induction of apoptosis, targets human astrocytes and upregulates antiviral genes more efficiently than ZIKV | [82] | |
LT854220 | + | - | - | [11] | ||
Brain-like primary endothelial cells (hBLECs) | KX601692 | + | - | Secretion of chemokines such as CXCL10 or CCL5 | [85] | |
Colon adenocarcinoma cell line CaCo-2, ATCC HTB-37 | AY453411 | + | - | - | [86] | |
Colon adenocarcinoma grade cell line II HT29, ATCC HTB-38 | ||||||
Colon adenocarcinoma cell line SW480, ATCC CCL-228 | ||||||
Embryonic lung cell line MRC-5, ATCC CCL-171 | ||||||
Epidermoid larynx carcinoma cell line Hep-2, ATCC CCL-23 | AY453411 | + | + | An established USUV infection can overcome the antiviral effect of types I and III IFNs | [86] | |
Epidermoid oral carcinoma cell line KB, ATCC CCL-17 | + | + | - | |||
Epitheloid cervix carcinoma HeLa, ATCC CCL-2 | AY453411 | + | - | - | [73] | |
AY453411 | + | - | - | [86] | ||
Hepatoblastoma cell line Hep-G2, ATCC HB-8065 | AY453411 | + | - | - | [86] | |
Lung adenocarcinoma epithelial cell line A549, ATCC CCL-185 | AY453411 | + | n.i. | USUV replication was lower than that of WNV in the presence of a large variety of subtypes of IFN-α, -β and γ | [87] | |
AY453411 | + | + | - | [86] | ||
Primary monocyte-derived dendritic cells (DC) | hMoDC | AY453412 | + | + | High IFN-β and TNF responses were found | [83] |
(DCs) | AY453411 | + | n.i. | USUV induced a higher activation of IFN-associated response and was more sensitive to types I and III IFN than WNV | [87] | |
Induced pluripotent stem cells (iPSc)-derived neural stem cells (NSCs) | AY453411 | + | + | Cells undergo cellular death by caspase 3-dependant apoptosis | [82] | |
AY453411 | + | +* | USUV replicated less efficiently and induced less inflammatory response and cell damage than WNV | [88] | ||
Induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium RPE | KX601692 | + | - | Strong antiviral and pro-inflammatory response | [85] | |
Primary nasal epithelial cells (NECs) | AY453412 | + | - | USUV did not induce a significant IFN response and inflammatory mediators IL-8/CXCL8 and IP-10/CXCL10 release in comparison to mock controls | [89] | |
Vascular endothelial cells EA.hy.926, ATCC: CRL-2922 | AY453412 | + | + | - | [77] |
Study | Mosquito Species | Virus Strains | Infective Dose(s) and Route | Incubation Temperature | Infection Rate | Transmission Rate | Dissemination Rate | Conclusions |
---|---|---|---|---|---|---|---|---|
[100] | Cx. p. molestus Cx. p. pipiens (The Netherlands) | MH891847 | 107 TCID50/mL Oral route | 28 °C | Day 14 p.i: 66.6% (34/51) and 87.9% (58/66) respectively | Day 14 p.i: 31.4% (16/51) and 21.2% (14/66) respectively | - | The tested species/ biotypes are competent vectors for USUV and the midgut barrier restricts virus dissemination in the mosquito after oral exposure |
3.5 × 103 TCID50/mL Intrathoracic route | Day 14 p.i: 100% (18/18) and (17/17) respectively | Day 14 p.i: 94% (17/18) and 88% (15/17) respectively | - | |||||
[105] | Ae. japonicus (Lelystad, the Netherlands) | MH891847 | 1.6 × 107 TCID50/mL Oral route | 28 °C | Day 14 p.i: 13.3% (4/30) | |||
3.5 × 103 TCID50/mL Intrathoracic route | Day 14 p.i: 100% (26/26) | Day 14 p.i: 88.5% (23/26) | Day 14 p.i: 100% (26/26) | |||||
[103] | Cx. p. typical form (Caldbeck: UK) | AY453412 | 106 PFU/mL Oral route | 25 °C | Days 7 p.i: 0/20 (0%) Day 14 p.i: 1/20 (5%) Day 21 p.i: 1/7 | Day 7 p.i: 0/20 (0%) Day 14 p.i: 1/1 Day 21 p.i: 0/7 | Day 7 p.i: 3/20 (15%) Day 14 p.i: 1/20 (5%) Day 21 p.i: 0/7 | Limited susceptibility to infection with USUV |
Cx. p. hybrid form (Brookwood, UK) | Days 7 and 14 p.i: (0%) Day 21 p/i: 1/18 (5.5%) | Days 7 and 14 p.i: (0%) Day 21 p/i: 0/18 (0%) | Days 7 and 14 p.i: (0%) Day 21 p/i: 0/18 (0%) | |||||
[106] | Ae. albopictus (Emilia-Romagna, Italy) | KF055442 (E2, Italy, T. m.) | 0.66 × 107.5 TCID50 Oral route | 28 ± 1 °C | 0% after 96 h, 1 and 2 weeks | 0% after 96 h, 1 and 2 weeks of infection | Ae. albopictus has a low vector competence for USUV | |
KF055441 (E2, Italy, Cx. p.) | 0% after 96 h, and 2 weeks Day 7p.i: 1/6 | |||||||
KF055440 (E2, Italy, Cx. p.) | 0.66 × 107.9 TCID50 Oral route | 28 ± 1 °C | 0% after 96 h, 1 and 2 weeks | |||||
[101] | Cx. p. (Brummen, The Netherlands) | HM569263 | 4 × 107 TCID50/mL Oral route | 28 °C | 80% | 69% | - | Temperature affects the susceptibility of Cx. pipiens to USUV infection and the midgut barrier restricts virus dissemination in the mosquito after oral exposure |
5.5 × 103 TCID50/mL Intrathoracic route | 100% | 100% | ||||||
3.2 × 107 TCID50 /mLOral route | 18 °C | 11% | - | |||||
23 °C | 53% | |||||||
28 °C | 90% |
Study * | Mosquito Species | Infective Dose(s) | Incubation Temperature | Infection Rate | Transmission Rate | Dissemination Rate | Conclusions | |
---|---|---|---|---|---|---|---|---|
[102] | Cx. pipiens | American population (Mercer County, NJ, USA) | 107.52 TCID50/mL | 28 °C | Day 7 p.i: 25% (4/16) Day 14 p.i: 58.6% (17/29) | Day 14 p.i: 23.5% (4/17) | Day 7 p.i: (1/1) Day 14 p.i: 93.3% (12/13) | Cx. pipiens complex mosquitoes are susceptible to USUV and competent for its potential transmission in North America Ae. albopictus is highly refractory to USUV infection and unlikely to contribute to USUV transmission in North America |
Ae. albopictus | 0% at days 7 and 14 p.i | - | - | |||||
Cx. quinquefasciatus American population (Vero Beach, FL, USA) | 106.95 TCID50/mL | Day 7 p.i: 93.3% (14/15) Day 14 p.i: 70% (21/30) | Day 14 p.i: 19% (4/21) | Day 7 p.i: (4/6)4 Day 14 p.i: 35.7% (5/14) | ||||
[104] | Cx. neavei African population (Barkedji, Senegal) | 2 × 107 PFU/mL (triplicate) | 27 °C | Day 14 p.i: 1/3, 2/9 and 0/1 | - | Day 14 p.i: 0/3 | Dose-dependent vector competence in Cx. neavei | |
2 × 108 PFU/mL | Day 14 p.i: p40/44 (90.9%) | Day 14 p.i: 13/16 (81.3%) | Day 14 p.i: 16/40 (40.0%) | |||||
[96] | Cx. neavei African population | 106 PFU/mL | 26 °C | Day 14 p.i: 2/10 (20%) | - | - | Failure of virus transmission to hamsters |
Study | Strains | Sex | Age (Weeks) | Viral Strains (GenBank) | Doses and Routes of Inoculation | Results |
---|---|---|---|---|---|---|
[85] | Swiss | M | 1 | KX601692 | 104 TCID50 IP | Weight loss/failure to gain weight/limb weakness and hind-limb paralysis/mortality of 60% at 14 days post-infection. Massive inflammatory response in the CNS and eyes (neuroretinitis and uveitis)/viral genome identification by RT-qPCR at 6 dpi in the liver, spleen, hind limb muscle, kidney, bladder and especially in nervous tissues such as eyes (including optic nerve), brain, spinal cord, and sciatic nerves |
[118] | 129/Sv | F | 4–5 | MK230891 MK230892 | 106 TCID50 IP, ID or IN | Disorientation/paraplegia/neuronal death in the brain and spinal cord and systemic RNA detection in a single mouse. Viral RNA detected in the brain 15 days post-infection of mice after IN injection of both strains/variable antibody-response. |
[46] | Swiss Webster (CFW) | NI | 3–4 | KC754955 AY453412 MH727238 | 103 PFU IC | Weight loss/tremors, apathy and paralysis of the posterior limbs 4 days after infection 100% mortality between the 8th and the 10th day |
103 PFU IP | Mortality of 1/10 at 10 days post-infection with KC754955. 60% of morbidity and 50% of mortality at 15 days post-infection with AY453412 | |||||
103 PFU SC | No effect after the injection of MH727238. No effect after the inoculation of KC754955 or MH727238. Weight loss and 30% mortality at 15 days post-infection with AY453412. | |||||
[119] | 129/Sv | M/F | 6 | KU760915 * | 104 PFU IP | No signs nor mortalities. |
[120] | Swiss | F | 8 | AY453412 | 102 ou 104 PFU IP | No signs/mortalities/neutralizing antibodies/USUV-RNA in the organs (e.g., brain) at any tested time after infection (4 to 35 days). |
1 | Dose-dependent mortality (15.8% and 60% respectively). USUV-RNA detection in the brain/anti-USUV IgG antibodies were detected from 15 d.p.i. | |||||
[121] | Swiss | F | 10 | AY453412 | 104PFU IP | No signs nor mortalities. |
[122] | NMRI | NI | 1 | AY453411 | 103 TCID50 IP | Disorientation, paraplegia, paralysis 100% of mortality after 11 days of infection. Neuronal and glial cells apoptosis/neuronal demyelination. |
>1 | No signs nor mortalities. | |||||
[18] | Swiss | NI | Suckling mice | ENT MP 1626 | IC (isolation and reisolation of the viral strain from Mansonia (Coquillettidia) aurites mosquitoes in Uganda) | Clinical signs (details not given, except paralysis in one mouse) and death by day 14 in 6/9 newborn mice. |
5–6 | >106,5 TCID50 IP | No mortalities in adult mice. |
Study | Strains | Sex | Age (Weeks) | Viral Strains (GenBank) | Doses and Routes of Inoculation | Results |
---|---|---|---|---|---|---|
[85] | C57BL/6 1 | M | 8–12 | KX601692 | 104 TCID50 IP | Weight loss/failure to gain weight/ limb weakness and hind-limb paralysis/massive inflammatory response in the CNS and eyes (neuroretinitis and uveitis); All infected C57BL/6 mice died 6 days post-infection |
[79] | AG129 2 | NI | 8–14 | KJ438730 | 101, 102, 103, 104, 105, 106 PFU IP | 75–100% mortality/Weight loss, apathy, conjunctivitis, and neurological symptoms (mobility disorders, paralysis of the lower limbs). Treatment of mice with favipiravir (150 mg/kg/dose, oral route) significantly reduced viral load in blood and tissues and significantly delayed virus-induced disease. |
[119] | 129 SvEv 1 | M and F | 6 | KU760915 3 | 104 PFU IP | Ruffled fur, hunching and ataxia/89% mortality at day 10 post-infection. Genomic USUV RNA detection in brain samples from dead animals. Significantly higher survival rate after USUV challenge in mice inoculated with pcDNA-USUV 4 (66.7%) than those inoculated with the empty vector (18.2%). The pcDNA-USUV can prime USUV specific humoral response. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benzarti, E.; Garigliany, M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020, 12, 1116. https://doi.org/10.3390/v12101116
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses. 2020; 12(10):1116. https://doi.org/10.3390/v12101116
Chicago/Turabian StyleBenzarti, Emna, and Mutien Garigliany. 2020. "In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus" Viruses 12, no. 10: 1116. https://doi.org/10.3390/v12101116