Acute Oak Decline Pathogens in Urban Spaces: An Occurrence Analysis Based on the Example of Wrocław, Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Plant Material
2.2. Pathogen Detection Procedure
2.3. Statistical Analysis
3. Results
3.1. Detection Frequency
3.2. Habitat Type and Pathogen Detection
3.3. Physiological and Visual Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peterken, G.F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Jim, C. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosyst. 1998, 2, 171–181. [Google Scholar] [CrossRef]
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change. Urban For. Urban Green. 2009, 8, 295–308. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef]
- Pautasso, M.; Schlegel, M.; Holdenrieder, O. Forest health in a changing world. Microb. Ecol. 2015, 69, 826–842. [Google Scholar] [CrossRef]
- Denman, S.; Brown, N.; Kirk, S.; Jeger, M.; Webber, J. A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. For. Int. J. For. Res. 2014, 87, 535–551. [Google Scholar] [CrossRef]
- González, A.J.; Ciordia, M. Brenneria goodwinii and Gibbsiella quercinecans isolated from weeping cankers on Quercus robur L. in Spain. Eur. J. Plant Pathol. 2020, 156, 965–969. [Google Scholar] [CrossRef]
- Fernandes, C.; Duarte, L.; Naves, P.; Sousa, E.; Cruz, L. First report of Brenneria goodwinii causing acute oak decline on Quercus suber in Portugal. J. Plant Pathol. 2022, 104, 837–838. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Celma, L.; Ruņģis, D.; Bokuma, G. First Report of Brenneria goodwinii and Gibbsiella quercinecans Bacteria, Detected on Weaken Oak Trees in Poland. Balt. For. 2021, 27, 166–169. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Sikora, K.; Milenković, I. First Report of Bacteria Associated with Bleeding Cankers on Oak Trees in Serbia. For. Pathol. 2025, 55, e70010. [Google Scholar] [CrossRef]
- Tkaczyk, M.; Sikora, K.; Galko, J. First Report of Bacteria Causing Acute Oak Decline on Quercus robur in Slovakia. Eur. J. Plant Pathol. 2024, 169, 113–120. [Google Scholar] [CrossRef]
- Bene, A.; Vergine, M.; Carluccio, G.; Portaccio, L.; Delle Donne, A.; De Bellis, L.; Luvisi, A. Acute Oak Decline-Associated Bacteria: An Emerging Worldwide Threat to Forests. Microorganisms 2025, 13, 1127. [Google Scholar] [CrossRef]
- Denman, S.; Doonan, J.; Ransom-Jones, E.; Broberg, M.; Plummer, S.; Kirk, S.; Scarlett, K.; Griffiths, A.; Kaczmarek, M.; Forster, J.; et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J. 2018, 12, 386–399. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.; Denman, S.; Kirk, S.; Venter, S.; Rodríguez-Palenzuela, P.; Coutinho, T. Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Syst. Appl. Microbiol. 2010, 33, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Crampton, B.; Plummer, S.; Kaczmarek, M.; McDonald, J.; Denman, S. A multiplex real-time PCR assay enables simultaneous rapid detection and quantification of bacteria associated with acute oak decline. Plant Pathol. 2020, 69, 1301–1310. [Google Scholar] [CrossRef]
- Doonan, J.M.; Broberg, M.; Denman, S.; McDonald, J.E. Host–microbiota–insect interactions drive emergent virulence in a complex tree disease. Proc. R. Soc. B 2020, 287, 20200956. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, M.; Lanta, V.; Zverev, V.; Rainio, K.; Kunavin, M.; Zvereva, E. Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Glob. Change Biol. 2017, 23, 4354–4364. [Google Scholar] [CrossRef]
- Brown, N.; Jeger, M.; Kirk, S.; Xu, X.; Denman, S. Epidemiology of Acute Oak Decline in Britain. Forestry 2018, 91, 64–75. [Google Scholar]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef]
- González, R.; López-López, M.; Biosca, E.; López, F.; Santiago, R.; López, M. First report of bacterial deep bark canker of walnut caused by Brenneria (Erwinia) rubrifaciens in Europe. Plant Dis. 2002, 86, 696. [Google Scholar] [CrossRef]
- Macháčová, M.; Nakládal, O.; Samek, M.; Baťa, D.; Zumr, V.; Pešková, V. Oak decline caused by biotic and abiotic factors in Central Europe: A case study from the Czech Republic. Forests 2022, 13, 1223. [Google Scholar] [CrossRef]
- Denman, S.; Webber, J. Oak declines: New definitions and new episodes in Britain. Q. J. For. 2009, 103, 285–290. [Google Scholar]
- Doonan, J.; Denman, S.; Pachebat, J.; McDonald, J. Genomic analysis of bacteria in the Acute Oak Decline pathobiome. Microb. Genom. 2019, 5, e000240. [Google Scholar] [CrossRef] [PubMed]
- Broberg, M.; Doonan, J.; Mundt, F.; Denman, S.; McDonald, J. Integrated multi-omic analysis of host-microbiota interactions in acute oak decline. Microbiome 2018, 6, 21. [Google Scholar] [CrossRef]
- Brus, R.; Pötzelsberger, E.; Lapin, K.; Brundu, G.; Orazio, C.; Straigyte, L.; Hasenauer, H. Extent, distribution and origin of non-native forest tree species in Europe. Scand. J. For. Res. 2019, 34, 533–544. [Google Scholar] [CrossRef]
- Kotlaba, F. Mushrooms and Other Fungi of Great Britain and Europe. Folia Geobot. Phytotaxon. 1984, 19, 329–331. [Google Scholar]
- Haq, I.; Hillmann, B.; Moran, M.; Willard, S.; Knights, D.; Fixen, K.; Schilling, J. Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME Commun. 2022, 2, 26. [Google Scholar] [CrossRef]
- Vuts, J.; Woodcock, C.; Sumner, M.; Caulfield, J.; Reed, K.; Inward, D.; Leather, S.; Pickett, J.; Birkett, M.; Denman, S. Responses of the two-spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles. Pest Manag. Sci. 2015, 72, 845–851. [Google Scholar] [CrossRef]
- Buse, J.; Schröder, B.; Assmann, T. Modelling habitat and spatial distribution of an endangered longhorn beetle—A case study for saproxylic insect conservation. Biol. Conserv. 2008, 141, 1400–1410. [Google Scholar] [CrossRef]
- Micó, E.; Reboleira, A.; Sánchez, A. Association between Cerambyx welensii and saproxylic beetle diversity in Mediterranean oak woodlands. Insect Conserv. Divers. 2015, 8, 261–270. [Google Scholar]
- Kadej, M.; Zając, K.; Smolis, A.; Tarnawski, D.; Tyszecka, K.; Malkiewicz, A.; Pietraszko, M.; Warchałowski, M.; Gil, R. The great capricorn beetle Cerambyx cerdo L. in south-western Poland–the current state and perspectives of conservation in one of the recent distribution centres in Central Europe. Nat. Conserv. 2017, 19, 111–134. [Google Scholar] [CrossRef]
Oak Species | Pathogen | Positive Trees (n) | Detection Rate (%) | Mean Ct | Ct Range |
---|---|---|---|---|---|
Q. robur | B. goodwinii | 6 | 12.2% | 32.4 | 28.2–35.9 |
G. quercinecans | 5 | 10.2% | 33.5 | 30.0–36.0 | |
R. victoriana | 3 | 6.1% | 34.2 | 32.1–36.8 | |
L. quercina | 2 | 4.1% | 36.1 | 35.1–37.0 | |
Q. rubra | B. goodwinii | 3 | 42.9% | 33.2 | 31.8–34.3 |
G. quercinecans | 0 | 0% | - | - | |
R. victoriana | 0 | 0% | - | - | |
L. quercina | 0 | 0% | - | - |
No. | Species | Circumference | Area Type | Additional Remarks | Bg | Lq | Rv | Gq |
---|---|---|---|---|---|---|---|---|
1 | Quercus robur | 154 | square/green area/plaza | Unpleasant odor | ||||
2 | Quercus robur | 204 | park | Dryness approx. 30% | ||||
3 | Quercus robur | 349 | park | Unpleasant odor. Exudate from a scarred wound. | ||||
4 | Quercus robur | 262 | park | Cerambyx cerdo. Crown heavily reduced. Resin from the wound. | 37.97 | |||
5 | Quercus robur | 337 | greenery along communication route | Ganoderma lucidum at the base of the trunk. Exudate from the wound. Area under the tree paved with asphalt. | ||||
6 | Quercus robur | 245 | greenery along communication route | Cerambyx cerdo, Ganoderma lucidum, extensive longitudinal trunk cavities with progressive decay. Area under the tree paved with asphalt. | ||||
7 | Quercus robur | 98 | park | Numerous epicormic shoots sprouting from the trunk, weakened tree. | 34.9 | 32.87 | ||
8 | Quercus robur | 178 | park | Unpleasant odor. Amorphous substance. | ||||
9 | Quercus robur | 185 | park | Foam. | ||||
10 | Quercus robur | 99 | park | Physiological dryness approx. 10%–15%. | 34.35 | 37.9 | ||
11 | Quercus robur | 194 | park | Amorphous substance. | ||||
12 | Quercus robur | 243 | park | Vital tree. | ||||
13 | Quercus robur | 162 | embankments on the Odra river | Exudate from the wound. Physiological dryness approx. 10%. | ||||
14 | Quercus robur | 382 | embankments on the Odra river | Exudate from the wound with amorphous substance. Cerambyx cerdo. Physiological dryness 10%. | ||||
15 | Quercus rubra | 223 | embankments on the Odra river | Declining tree, crown heavily reduced. | ||||
16 | Quercus robur | 223 | embankments on the Odra river | Signs of insect feeding (2 mm oviposition holes). Dryness approx. 10%–15%. | ||||
17 | Quercus rubra | 298 | embankments on the Odra river | Physiological dryness approx. 10%–15%. | 37.44 | |||
18 | Quercus rubra | 324 | embankments on the Odra river | Physiological dryness approx. 20%. Fruiting bodies of Fomitiporia robusta. | ||||
19 | Quercus robur | 212 | allotment gardens | Cerambyx cerdo. Dryness approx. 50%. | ||||
20 | Quercus robur | 246 | allotment gardens | Dead tree. | ||||
21 | Quercus robur | 305 | allotment gardens | Declining tree, reduced crown. Cerambyx cerdo. Fruiting bodies of Fomitiporia robusta. | ||||
22 | Quercus robur | 420 | greenery along communication route | Vital tree. One minor exudate at trunk base. Cerambyx cerdo. | 38.06 | 39.61 | ||
23 | Quercus robur | 283 | greenery near recreation area | Cerambyx cerdo. Thinned crown. | ||||
24 | Quercus robur | 239 | greenery near recreation area | Thinned crown, heavily pruned. | 36.48 | 29.52 | 32.02 | 38.5 |
25 | Quercus robur | 291 | greenery near recreation area | Vital tree. | ||||
26 | Quercus robur | 409 | greenery near recreation area | Vital tree. | ||||
27 | Quercus rubra | 306 | embankments on the Odra river | Declining tree, dryness approx. 60%. Fomes fomentarius. Damaged roots. Numerous epicormic shoots. | 33.9 | |||
28 | Quercus robur | 126 | embankments on the Odra river | Numerous epicormic shoots sprouting from the trunk, weakened tree. | ||||
29 | Quercus robur | 207 | embankments on the Odra river | Exudate from a partially scarred wound. Dryness approx. 10%. | ||||
30 | Quercus robur | 201 | embankments on the Odra river | Thinned crown. Physiological dryness approx. 10%–15%. | ||||
31 | Quercus robur | 235 | embankments on the Odra river | Thinned crown 2025. | ||||
32 | Quercus robur | 216 | embankments on the Odra river | Thinned crown. Dryness approx. 10%–20%, including dying crown sections. | 37.28 | |||
33 | Quercus robur | 167 | embankments on the Odra river | Thinned crown. Dryness < 10%. | ||||
34 | Quercus robur | 211 | embankments on the Odra river | Dryness approx. 10%, including individual dead branches. | ||||
35 | Quercus robur | 126 | embankments on the Odra river | Epicormic shoots sprouting. | ||||
36 | Quercus robur | 123 | embankments on the Odra river | Intense exudate from scarred wound. Numerous epicormic shoots emerging from the trunk and leader. | 35.75 | 39.7 | 32.34 | |
37 | Quercus robur | 211 | embankments on the Odra river | Damaged roots. Epicormic shoots sprouting in the crown. Thinned crown. | ||||
38 | Quercus robur | 209 | embankments on the Odra river | Damaged roots. Heavily thinned crown, dryness approx. 50%, including branch dryness. | 30.56 | |||
39 | Quercus robur | 242 | embankments on the Odra river | Fresh scar from lightning strike. Damaged roots. Heavily thinned crown, dryness approx. 70%, including branch dryness. Declining tree. | ||||
40 | Quercus robur | 195 | embankments on the Odra river | Slightly thinned crown. | ||||
41 | Quercus robur | 178 | embankments on the Odra river | Declining tree. Cerambyx cerdo. | ||||
42 | Quercus robur | 240 | embankments on the Odra river | Declining tree. | ||||
43 | Quercus robur | 169 | embankments on the Odra river | Physiological dryness in the upper parts of the crown, approx. 15%–20%. | ||||
44 | Quercus robur | 183 | embankments on the Odra river | Vital. | ||||
45 | Quercus robur | 210 | embankments on the Odra river | Exudate from a scarred wound. Crown heavily thinned. | ||||
46 | Quercus robur | 201 | embankments on the Odra river | Upper part of the crown is dead. Numerous epicormic shoots. | ||||
47 | Quercus robur | 330 | informal green area | Vital. | ||||
48 | Quercus rubra | 375 | embankments on the Odra river | Physiological dryness approx. 20%. Numerous epicormic shoots emerging in the crown. Signs of insect feeding–oval 2 mm holes. Fruiting bodies of Fomitiporia robusta. | ||||
49 | Quercus rubra | 257 | embankments on the Odra river | Crown heavily thinned. | 34.95 | |||
50 | Quercus rubra | 218 | embankments on the Odra river | Physiological dryness approx. 20%. | ||||
51 | Quercus robur | 97 | Western Park | Crown heavily thinned. Dryness approx. 30%–40%. | ||||
52 | Quercus robur | 98 | Western Park | Crown heavily thinned. Dryness approx. 60%. | ||||
53 | Quercus robur | 310 | Western Park | Thinned crown. | ||||
54 | Quercus robur | 271 | accompanying green areas | Damaged roots. Declining crown. | ||||
55 | Quercus robur | 333 | greenery along communication route | Thinned crown. Physiological dryness approx. 10%. | ||||
56 | Quercus robur | 320 | greenery along communication route | Thinned crown. Dryness approx. 10%–15%. Cerambyx cerdo (great capricorn beetle). Unpleasant odor. Numerous insects clustering around the exudate. |
Habitat Type | No. of Trees Sampled | No. of Positive Trees | Species | Detected Pathogens (n) |
---|---|---|---|---|
River embankments | 29 | 6 | Q. rubra (3) | Bg (3) |
Q. robur (3) | Bg (2), Gq (2), Rv (2) | |||
Park | 11 | 2 | Q. robur (2) | Bg (2), Gq (1) |
Greenery near recreation area | 4 | 1 | Q. robur (1) | Bg, Lq, Gq, Rv (all in one sample) |
Greenery along comm. routes | 4 | 1 | Q. robur (1) | Bg, Lq |
Western Park | 3 | 0 | - | - |
Allotment gardens | 3 | 0 | - | - |
Informal green area | 1 | 0 | - | - |
Accompanying green areas | 1 | 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkaczyk, M.; Sobolewski, R.K.; Sikora, K. Acute Oak Decline Pathogens in Urban Spaces: An Occurrence Analysis Based on the Example of Wrocław, Poland. Forests 2025, 16, 1494. https://doi.org/10.3390/f16091494
Tkaczyk M, Sobolewski RK, Sikora K. Acute Oak Decline Pathogens in Urban Spaces: An Occurrence Analysis Based on the Example of Wrocław, Poland. Forests. 2025; 16(9):1494. https://doi.org/10.3390/f16091494
Chicago/Turabian StyleTkaczyk, Miłosz, Robert Krzysztof Sobolewski, and Katarzyna Sikora. 2025. "Acute Oak Decline Pathogens in Urban Spaces: An Occurrence Analysis Based on the Example of Wrocław, Poland" Forests 16, no. 9: 1494. https://doi.org/10.3390/f16091494
APA StyleTkaczyk, M., Sobolewski, R. K., & Sikora, K. (2025). Acute Oak Decline Pathogens in Urban Spaces: An Occurrence Analysis Based on the Example of Wrocław, Poland. Forests, 16(9), 1494. https://doi.org/10.3390/f16091494