Early Succession Across Boreal Forest Transitions After Linear Disturbance and Wildfire
Abstract
1. Introduction
- Characterize regeneration and recruitment of early forest succession in peatland, transitional, and mesic upland boreal forests using tree and tall shrub abundance and composition.
- Identify relative disturbance effects of individual (seismic line or wildfire) and successive disturbances (seismic line followed by wildfire) on regeneration and recruitment densities of trees and tall shrubs.
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Field Sampling Methods
2.3. Statistical Analyses
3. Results
3.1. Tree and Tall Shrub Relative Abundances
3.2. Similarity of Abundant Tree and Tall Shrub Composition
3.3. Tree and Tall Shrub Observed Densities
3.4. Disturbance Effects on Regeneration and Recruitment of Trees and Tall Shrubs
4. Discussion
4.1. Compositional Characteristics of Early Succession Across Boreal Forest Transitions
4.2. Structural Characteristics of Early Succession Across Boreal Forest Transitions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brassard, B.W.; Chen, H.Y.H. Stand Structural Dynamics of North American Boreal Forests. Crit. Rev. Plant Sci. 2006, 25, 115–137. [Google Scholar] [CrossRef]
- Brandt, J.P.; Flannigan, M.D.; Maynard, D.G.; Thompson, I.D.; Volney, W.J.A. An Introduction to Canada’s Boreal Zone: Ecosystem Processes, Health, Sustainability, and Environmental Issues. Environ. Rev. 2013, 21, 207–226. [Google Scholar] [CrossRef]
- Chen, H.Y.; Popadiouk, R.V. Dynamics of North American Boreal Mixedwoods. Environ. Rev. 2002, 10, 137–166. [Google Scholar] [CrossRef]
- Bartels, S.F.; Chen, H.Y.H.; Wulder, M.A.; White, J.C. Trends in Post-Disturbance Recovery Rates of Canada’s Forests Following Wildfire and Harvest. For. Ecol. Manag. 2016, 361, 194–207. [Google Scholar] [CrossRef]
- Buma, B. Disturbance Interactions: Characterization, Prediction, and the Potential for Cascading Effects. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Burton, P.J.; Jentsch, A.; Walker, L.R. The Ecology of Disturbance Interactions. BioScience 2020, 70, 854–870. [Google Scholar] [CrossRef]
- Mitchell, J.C.; Kashian, D.M.; Chen, X.; Cousins, S.; Flaspohler, D.; Gruner, D.S.; Johnson, J.S.; Surasinghe, T.D.; Zambrano, J.; Buma, B. Forest Ecosystem Properties Emerge from Interactions of Structure and Disturbance. Front. Ecol. Environ. 2023, 21, 14–23. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.; et al. Changing Disturbance Regimes, Ecological Memory, and Forest Resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Côté, I.M.; Darling, E.S.; Brown, C.J. Interactions among Ecosystem Stressors and Their Importance in Conservation. Proc. R. Soc. B 2016, 283, 20152592. [Google Scholar] [CrossRef]
- Webster, K.L.; Beall, F.D.; Creed, I.F.; Kreutzweiser, D.P. Impacts and Prognosis of Natural Resource Development on Water and Wetlands in Canada’s Boreal Zone. Environ. Rev. 2015, 23, 78–131. [Google Scholar] [CrossRef]
- Dabros, A.; Pyper, M.; Castilla, G. Seismic Lines in the Boreal and Arctic Ecosystems of North America: Environmental Impacts, Challenges, and Opportunities. Environ. Rev. 2018, 26, 214–229. [Google Scholar] [CrossRef]
- Nagy-Reis, M.; Dickie, M.; Calvert, A.M.; Hebblewhite, M.; Hervieux, D.; Seip, D.R.; Gilbert, S.L.; Venter, O.; DeMars, C.; Boutin, S.; et al. Habitat Loss Accelerates for the Endangered Woodland Caribou in Western Canada. Conserv. Sci. Pract. 2021, 3, e437. [Google Scholar] [CrossRef]
- Viliani, L.; Sutheimer, C.M.; Nielsen, S.E. Identifying Restoration Priorities for Habitat Defragmentation: A Case Study in Alberta’s Oil Sands. Landsc. Ecol. 2024, 39, 178. [Google Scholar] [CrossRef]
- Pattison, C.A.; Quinn, M.S.; Dale, P.; Catterall, C.P. The Landscape Impact of Linear Seismic Clearings for Oil and Gas Development in Boreal Forest. Northwest Sci. 2016, 90, 340. [Google Scholar] [CrossRef]
- Filicetti, A.; Cody, M.; Nielsen, S. Caribou Conservation: Restoring Trees on Seismic Lines in Alberta, Canada. Forests 2019, 10, 185. [Google Scholar] [CrossRef]
- Sutheimer, C.M.; Filicetti, A.T.; Viliani, L.; Nielsen, S.E. Regeneration Lags and Growth Trajectories Influence Passive Seismic Line Recovery in Western North American Boreal Forests. Restor. Ecol. 2024, 33, e14353. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory Using Google Earth Engine: The First Map and Preliminary Results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef]
- Bauer, I.E.; Bhatti, J.S.; Swanston, C.; Wieder, R.K.; Preston, C.M. Organic Matter Accumulation and Community Change at the Peatland–Upland Interface: Inferences from 14C and 210Pb Dated Profiles. Ecosystems 2009, 12, 636–653. [Google Scholar] [CrossRef]
- Locky, D.A.; Bayley, S.E.; Vitt, D.H. The Vegetational Ecology of Black Spruce Swamps, Fens, and Bogs in Southern Boreal Manitoba, Canada. Wetlands 2005, 25, 564–582. [Google Scholar] [CrossRef]
- Davidson, S.J.; Dazé, E.; Byun, E.; Hiler, D.; Kangur, M.; Talbot, J.; Finkelstein, S.A.; Strack, M. The Unrecognized Importance of Carbon Stocks and Fluxes from Swamps in Canada and the USA. Environ. Res. Lett. 2022, 17, 053003. [Google Scholar] [CrossRef]
- Dimitrov, D.D.; Bhatti, J.S.; Grant, R.F. The Transition Zones (Ecotone) between Boreal Forests and Peatlands: Modelling Water Table along a Transition Zone between Upland Black Spruce Forest and Poor Forested Fen in Central Saskatchewan. Ecol. Model. 2014, 274, 57–70. [Google Scholar] [CrossRef]
- Government of Alberta. Alberta Wetland Classification System; Alberta Environment and Sustainable Resource Development: Edmonton, Alberta, 2015; ISBN 978-1-4601-2258-7. [Google Scholar]
- Alberta Biodiversity Monitoring Institute. The Human Footprint Inventory (HFI) for Alberta 2022. 2025. Available online: https://abmi.ca/data-portal/80.html (accessed on 7 June 2025).
- Environment Canada. Recovery Strategy for the Woodland Caribou (Rangifer Tarandus Caribou), Boreal Population, in Canada; Species at Risk Act Recovery Strategy Series; Environment Canada: Ottawa, ON, Canada, 2012; pp. xi + 138. ISBN 978-1-100-20769-8. [Google Scholar]
- Filicetti, A.T.; Nielsen, S.E. Tree Regeneration on Industrial Linear Disturbances in Treed Peatlands Is Hastened by Wildfire and Delayed by Loss of Microtopography. Can. J. For. Res. 2020, 50, 936–945. [Google Scholar] [CrossRef]
- Filicetti, A.T.; Nielsen, S.E. Effects of Wildfire and Soil Compaction on Recovery of Narrow Linear Disturbances in Upland Mesic Boreal Forests. For. Ecol. Manag. 2022, 510, 120073. [Google Scholar] [CrossRef]
- Beckingham, J.D.; Archibald, J.H. Field Guide to Ecosites of Northern Alberta; Special Report; Canadian Forest Service: Ottawa, ON, Canada; Northern Forestry Centre: Edmonton, AB, Canada, 1996; ISBN 978-0-660-16369-7. [Google Scholar]
- Environment and Protected Areas Cutline and Trail Attribution Project; Government of Alberta: Edmonton, AB, Canada, 2025; Unpublished work.
- Government of Alberta Historical Wildfire Perimeter Data: 1931 to 2024. 2025. Available online: https://www.alberta.ca/system/files/fp-historical-wildfire-perimeter-data.zip (accessed on 2 February 2025).
- Jones, C.; Van Dongen, A.; Harvey, J.; Degenhardt, D. Field Sampling Methods on Seismic Lines: A Comparison between Circular Plots and Belt Transects. Restor. Ecol. 2021, 30, e13619. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-7975-9. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2025. Available online: https://CRAN.R-project.org/package=vegan (accessed on 5 June 2025).
- Quensen, J.; Simpson, G.; Oksanen, J. Ggordiplots: Make “ggplot2” Versions of Vegan’s Ordiplots. 2024. Available online: https://CRAN.R-project.org/package=ggordiplots (accessed on 5 June 2024).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef]
- Lüdecke, D. Ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Source Softw. 2018, 3, 772. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. 2025. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 5 June 2025).
- Bergeron, Y.; Chen, H.Y.H.; Kenkel, N.C.; Leduc, A.L.; Macdonald, S.E. Boreal Mixedwood Stand Dynamics: Ecological Processes Underlying Multiple Pathways. For. Chron. 2014, 90, 202–213. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Celis, G.; Chapin, F.S., III; Hollingsworth, T.N.; Jean, M.; Mack, M.C. Factors Shaping Alternate Successional Trajectories in Burned Black Spruce Forests of Alaska. Ecosphere 2020, 11, e03129. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Statistics for Biology and Health; Springer: New York, NY, USA; London, UK, 2007; ISBN 978-0-387-45967-7. [Google Scholar]
- Anyomi, K.A.; Neary, B.; Chen, J.; Mayor, S.J. A Critical Review of Successional Dynamics in Boreal Forests of North America. Environ. Rev. 2022, 30, 563–594. [Google Scholar] [CrossRef]
- Brown, J.K.; DeByle, N.V. Fire Damage, Mortality, and Suckering in Aspen. Can. J. For. Res. 1987, 17, 1100–1109. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Rupp, T.S.; Olson, M.; Verbyla, D. Modeling Impacts of Fire Severity on Successional Trajectories and Future Fire Behavior in Alaskan Boreal Forests. Landsc. Ecol. 2011, 26, 487–500. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutheimer, C.M.; Nielsen, S.E. Early Succession Across Boreal Forest Transitions After Linear Disturbance and Wildfire. Forests 2025, 16, 1333. https://doi.org/10.3390/f16081333
Sutheimer CM, Nielsen SE. Early Succession Across Boreal Forest Transitions After Linear Disturbance and Wildfire. Forests. 2025; 16(8):1333. https://doi.org/10.3390/f16081333
Chicago/Turabian StyleSutheimer, Colleen M., and Scott E. Nielsen. 2025. "Early Succession Across Boreal Forest Transitions After Linear Disturbance and Wildfire" Forests 16, no. 8: 1333. https://doi.org/10.3390/f16081333
APA StyleSutheimer, C. M., & Nielsen, S. E. (2025). Early Succession Across Boreal Forest Transitions After Linear Disturbance and Wildfire. Forests, 16(8), 1333. https://doi.org/10.3390/f16081333