A Comparative Evaluation of Threshold Segmentation and LiDAR for Sawmill Residue Volume Estimation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Workflow Diagram
2.4. Xylometer Method and Real Volume
- V = volume (m3);
- r2 = radius squared (m);
- h = height (m).
2.5. Volume Estimation from 2D Images
2.5.1. Image Acquisition
2.5.2. Apparent Volume in Piles
- = apparent volume (m3);
- = length of the first base (m);
- = length of the second base (m);
- = height (perpendicular distance) between the two parallel bases of the trapezoid (m);
- = length of the prism (m).
2.5.3. Threshold Segmentation
- Im′ (x, y) = new image with the classified pixels;
- Im (x, y) = original image;
- threshold = value that allows to differentiate the objects present in the image.
2.5.4. Stacking Coefficient Images
- = stacking coefficient;
- = wood pixels;
- = total pixels.
2.5.5. Estimated Volume Images
- = estimated volume (m3);
- = apparent volume (m3);
- = average stacking coefficient.
2.6. Volume Estimatation Using Light Detection and Ranging (LiDAR)
2.6.1. Point Cloud Acquisition
2.6.2. Apparent Volume in LiDAR Data
2.6.3. Projected Area Calculation
2.6.4. Stacking Coefficient LiDAR Data
- = stacking coefficient;
- = wood area;
- = total area.
2.6.5. Estimated Volume of LiDAR Data
- = estimated volume (m3);
- = apparent volume in LiDAR data (m3);
- = average stacking coefficient of two sides.
2.7. Data Analysis
- n = number of observations;
- yi = observed values;
- ŷi = predicted values.
- yi = observed values;
- ŷi = predicted values;
- = mean of observed values.
3. Results
3.1. Apparent Volume
3.2. Estimated Volume
3.3. Evaluation of R2 and RMSE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020—Key Findings; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAO. El Estado de los Bosques del Mundo 2024: Innovaciones en el Sector Forestal Para Lograr Un Futuro Más Sostenible; Food and Agriculture Organization: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- CONAFOR. Principales Indicadores del Sector Forestal en México. Data Bosques. Available online: https://databosques.cnf.gob.mx/inicio/ (accessed on 3 June 2025).
- CONAFOR. Estado que Guarda el Sector Forestal en México; Comisión Nacional Forestal: Zapopan, Mexico, 2020.
- CONAFOR. Principales Indicadores Forestales, Ciclo 2015–2020; Comisión Nacional Forestal: Zapopan, Mexico, 2020. Available online: https://snmf.cnf.gob.mx/principaleindicadoresforestalesciclo-2015-2020/ (accessed on 24 January 2025).
- González-Elizondo, M.S.; González-Elizondo, M.; Tena-Flores, J.A.; Ruacho-González, L.; López-Enríquez, I.L. Vegetación de la Sierra Madre Occidental, México: Una síntesis. Acta Bot. Mex. 2012, 100, 351–403. [Google Scholar] [CrossRef]
- Wehenkel, C.; Corral-Rivas, J.J.; Hernández-Díaz, J.C.; von Gadow, K. Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann. For. Sci. 2011, 68, 385–394. [Google Scholar] [CrossRef]
- Moctezuma López, G.; Ramírez Sánchez, E.U.; Pérez Miranda, R.; Ramírez García, A.G.; Rodríguez Sauceda, E.N. Evolución del producto interno bruto (PIB) de la industria del aserrío: Ícono del sector forestal mexicano (1995–2019). Rev. Ra Ximhai 2021, 17, 265–284. [Google Scholar] [CrossRef]
- Dudziec, P.; Stachowicz, P.; Stolarski, M.J. Diversity of properties of sawmill residues used as feedstock for energy generation. Renew. Energy 2023, 202, 822–833. [Google Scholar] [CrossRef]
- Moreno-Lopez, M.; Alarcón-Herrera, M.T.; Martin-Dominguez, I.R. Feasibility of pelletizing forest residues in Northern Mexico. Waste Biomass Valorization 2017, 8, 923–932. [Google Scholar] [CrossRef]
- Fregoso-Madueño, J.N.; Goche-Télles, J.R.; Rutiaga-Quiñones, J.G.; González-Laredo, R.F.; Bocanegra-Salazar, M.; Chávez-Simental, J.A. Usos alternativos de los desechos de la industria del aserrío. Rev. Chapingo Ser. Cienc. For. Y Del Ambient. 2017, 23, 243–260. [Google Scholar] [CrossRef]
- Fagbenro, O.K.; Abdulfatai, K. Review on the Environmental Impact of Saw Mill Waste Discharges in Nigeria. J. Civ. Environ. Stud. 2018, 1, 75–81. [Google Scholar] [CrossRef]
- Olawuni, P.O.; Okunola, O.H. Socioeconomic Impacts of Sawmill Industry on Residents: A Case Study of Ile-Ife, Nigeria. J. Econ. Dev. Stud. 2014, 2, 167–176. [Google Scholar] [CrossRef]
- Tian, J.; Yu, F.; Guo, Z.; Yan, Y.; Xie, Y.; Ma, Z.; Li, Q.; Fousseni, F.; Liu, W. Forest residues contribute significantly to climate change in China. Resour. Conserv. Recycl. 2023, 198, 107157. [Google Scholar] [CrossRef]
- Costa Pinto, L.; Sousa, S.; Valente, M. Forest bioenergy as a land and wildfire management tool: Economic valuation under different informational contexts. Energy Policy 2022, 161, 112765. [Google Scholar] [CrossRef]
- Borrego-Núñez, C.; López-Serrano, P.M.; Domínguez-Calleros, P.A.; Compeán-Aguirre, J.L.; Carrillo-Parra, A. Use of the threshold segmentation method as an alternative for estimating the volume of forest industry residues. J. For. Sci. 2024, 70, 135–143. [Google Scholar] [CrossRef]
- Câmpu, V.R.; Dumitrache, R.; Borz, S.A.; Timofte, A.I. The impact of log length on the conversion factor of stacked wood to solid content. Wood Res. 2015, 60, 503–518. [Google Scholar]
- Rondeux, J. Medición de Árboles y Masas Forestales; Mundi-Prensa Libros: Madrid, Spain, 2010. [Google Scholar]
- Antunes Santana, O.; Imaña Encinas, J.; Riesco Muñoz, G. Stacking factor in transporting firewood produced from a mixture of Caatinga biome species in Brazil. Int. J. For. Eng. 2023, 34, 54–63. [Google Scholar] [CrossRef]
- Yu, C.; Sun, Y.; Cao, Y.; He, J.; Fu, Y.; Zhou, X. A Novel Wood Log Measurement Combined Mask R-CNN and Stereo Vision Camera. Forests 2023, 14, 285. [Google Scholar] [CrossRef]
- Manish, R.; Hasheminasab, S.M.; Liu, J.; Koshan, Y.; Mahlberg, J.A.; Lin, Y.C.; Ravi, R.; Zhou, T.; McGuffey, J.; Wells, T.; et al. Image-aided LiDAR mapping platform and data processing strategy for stockpile volume estimation. Remote Sens. 2022, 14, 231. [Google Scholar] [CrossRef]
- Hartl, A.; Arth, C.; Schmalstieg, D. Instant segmentation and feature extraction for recognition of simple objects on mobile phones. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 17–24. [Google Scholar]
- Ganesan, P.; Rajini, V.; Rajkumar, R.I. Segmentation and edge detection of color images using CIELAB color space and edge detectors. In Proceedings of the INTERACT-2010, Chennai, India, 3–5 December 2010; pp. 393–397. [Google Scholar]
- Yu, Y.; Wang, C.; Fu, Q.; Kou, R.; Huang, F.; Yang, B.; Yang, T.; Gao, M. Techniques and challenges of image segmentation: A review. Electronics 2023, 12, 1199. [Google Scholar] [CrossRef]
- Bhargavi, K.; Jyothi, S. A survey on threshold-based segmentation technique in image processing. Int. J. Innov. Res. Dev. 2014, 3, 234–239. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2004. [Google Scholar]
- Robert, U.W.; Etuk, S.E.; Agbasi, O.E. Bulk volume determination by modified water displacement method. Iraqi J. Sci. 2019, 60, 1704–1710. [Google Scholar] [CrossRef]
- Pásztory, Z.; Heinzmann, B.; Barbu, M.-C. Manual and automatic volume measuring methods for industrial timber. IOP Conf. Ser. Earth Environ. Sci. 2018, 159, 012019. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef]
- Sezgin, M.; Sankur, B.L. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Luo, M.R. CIELAB. In Encyclopedia of Color Science and Technology; Shamey, R., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Rico-Fernández, M.P.; Rios-Cabrera, R.; Castelán, M.; Guerrero-Reyes, H.-I.; Juarez-Maldonado, A. A contextualized approach for segmentation of foliage in different crop species. Comput. Electron. Agric. 2019, 156, 378–386. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Singh, G.; Bajaj, V. Image segmentation using multilevel thresholding: A research review. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 44, 1–29. [Google Scholar] [CrossRef]
- Galán Larrea, R.; Pérez Galeana, J.C.; Rivera Nava, J.L.; Valera Venegas, G. Volumen y rentabilidad de la leña en un acahual intervenido con roza, tumba y quema en la región costa de Oaxaca. Cienc. Mar 2014, 54, 3–18. [Google Scholar]
- RStudio Team. RStudio (Version 2023.12.1 Build 402) [Software]. Available online: https://posit.co/products/open-source/rstudio/ (accessed on 15 May 2025).
- Gombin, J.; Vaidyanathan, R.; Agafonkin, V.; Mapbox. Package Concaveman (Version 1.1.0) [R Package]. Available online: https://cran.r-project.org/web/packages/concaveman/index.html (accessed on 15 May 2025).
- Roussel, J.-R.; Barber, C.B.; Habel, K.; Grasman, R.; Gramacy, R.B.; Mozharovskyi, P.; Sterratt, D.C. Package Geometry (Version 0.5.1) [R Package]. Available online: https://cran.r-project.org/web/packages/geometry/index.html (accessed on 15 May 2025).
- Xie, P.; Liu, Y.; He, Q.; Zhao, X.; Yang, J. An efficient vector-raster overlay algorithm for high-accuracy and high-efficiency surface area calculations of irregularly shaped land use patches. ISPRS Int. J. Geo-Inf. 2017, 6, 156. [Google Scholar] [CrossRef]
- Feng, H.; Chen, Y.; Luo, Z.; Sun, W.; Li, W.; Li, J. Automated extraction of building instances from dual-channel airborne LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103042. [Google Scholar] [CrossRef]
- Haynes, W. Bonferroni correction. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; p. 154. [Google Scholar] [CrossRef]
- Heikkila, J.; Silvén, O. A Four-Step Camera Calibration Procedure with Implicit Image Correction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 1106–1112. [Google Scholar] [CrossRef]
- Corradetti, A.; Seers, T.; Mercuri, M.; Calligaris, C.; Busetti, A.; Zini, L. Benchmarking different SfM-MVS photogrammetric and iOS LiDAR acquisition methods for the digital preservation of a short-lived excavation: A case study from an area of sinkhole related subsidence. Remote Sens. 2022, 14, 5187. [Google Scholar] [CrossRef]
- Gülci, S.; Yurtseven, H.; Akay, A.O.; Akgul, M. Measuring tree diameter using a LiDAR-equipped smartphone: A comparison of smartphone- and caliper-based DBH. Environ. Monit. Assess. 2023, 195, 678. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef]
- Yan, F.; Feng, Z.; Li, T.; Wang, M. Research on the method of log scaling by mobile phone combined with rangefinder. For. Grassl. Res. Res. 2016, 6, 120. [Google Scholar]
- Cordero, R.R.; Seckmeyer, G.; Labbe, F. Effect of the Resolution on the Uncertainty Evaluation. Metrologia 2006, 43, L33. [Google Scholar] [CrossRef]
- Zakharov, I.; Botsiura, O.; Semenikhin, V. Study of Reading Errors When Calibrating Analog Ohmmeters. Ukr. Metrol. J. 2024, 1, 17–22. [Google Scholar] [CrossRef]
- Krigstin, S.; Hayashi, K.; Tchórzewski, J.; Wetzel, S. Current inventory and modelling of sawmill residues in Eastern Canada. For. Chron. 2012, 88, 626–635. [Google Scholar] [CrossRef]
Method | Minimun | Median | Mean | Maximum | SD |
---|---|---|---|---|---|
LiDAR | 0.0848 | 0.0987 | 0.0985 | 0.1070 | 0.0056 |
Trapezoidal formula | 0.0879 | 0.1005 | 0.0990 | 0.1031 | 0.0044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego-Núñez, C.; García-Quezada, J.d.D.; Vásquez-Ibarra, L.; López-Serrano, P.M.; Domínguez-Calleros, P.A.; Carrillo-Parra, A.; Compeán-Aguirre, J.L. A Comparative Evaluation of Threshold Segmentation and LiDAR for Sawmill Residue Volume Estimation. Forests 2025, 16, 1045. https://doi.org/10.3390/f16071045
Borrego-Núñez C, García-Quezada JdD, Vásquez-Ibarra L, López-Serrano PM, Domínguez-Calleros PA, Carrillo-Parra A, Compeán-Aguirre JL. A Comparative Evaluation of Threshold Segmentation and LiDAR for Sawmill Residue Volume Estimation. Forests. 2025; 16(7):1045. https://doi.org/10.3390/f16071045
Chicago/Turabian StyleBorrego-Núñez, Carlos, Juan de Dios García-Quezada, Leonardo Vásquez-Ibarra, Pablito Marcelo López-Serrano, Pedro Antonio Domínguez-Calleros, Artemio Carrillo-Parra, and Jorge Luis Compeán-Aguirre. 2025. "A Comparative Evaluation of Threshold Segmentation and LiDAR for Sawmill Residue Volume Estimation" Forests 16, no. 7: 1045. https://doi.org/10.3390/f16071045
APA StyleBorrego-Núñez, C., García-Quezada, J. d. D., Vásquez-Ibarra, L., López-Serrano, P. M., Domínguez-Calleros, P. A., Carrillo-Parra, A., & Compeán-Aguirre, J. L. (2025). A Comparative Evaluation of Threshold Segmentation and LiDAR for Sawmill Residue Volume Estimation. Forests, 16(7), 1045. https://doi.org/10.3390/f16071045