Nesting Habitat Selection and Suitable Breeding Habitat of Blue-Crowned Laughingthrush: Implication on Its Habitat Conservation
Abstract
:1. Introduction
2. Method
2.1. Study Area
2.2. Data Collection
2.2.1. Occurrence of BCLT
2.2.2. Nesting Habitat Characteristic
2.2.3. Environmental Variables Used by SDMs
2.3. Data Processing
2.3.1. Data Analysis
2.3.2. Suitable Habitat Distribution Prediction
3. Results
3.1. Habitat Preference at Different Scales
3.2. Suitable Breeding Habitat Distribution
4. Discussion
4.1. Land-Use Selection
4.2. Microhabitat Selection
4.3. Suitable Habitat Distribution and Conservation Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reunanen, P.; Nikula, A.; Mönkkönen, M.; Hurme, E. Predicting the occupancy of the Siberian flying squirrel in old-growth forest patches in northern Finland. Ecol. Appl. 2002, 12, 1188–1198. [Google Scholar]
- De Souza, E.B. Habitat selection by arboreal termites in forest islands of a Neotropical floodplain. Acta Oecol. 2020, 108, 103648. [Google Scholar]
- Bara, M.; Segura, L.N. Effect of Air Temperature and water depth on bird abundance: A case study of rallidae and anatidae in the Northeastern Algerian Garaet Hadj Tahar. Pak. J. Zool. 2018, 5, 211–217. [Google Scholar] [CrossRef]
- Mannan, C. Nest-site selection by cooper’s hawks in an urban environment. J. Wildl. Manag. 1998, 62, 864–871. [Google Scholar]
- Zeng, X.; Lu, X. Interspecific dominance and asymmetric competition with respect to nesting habitats between two snowfinch species in a high-altitude extreme environment. Ecol. Res. 2009, 24, 607–616. [Google Scholar] [CrossRef]
- Larned, A.F.; Hewett Ragheb, E.L.; Miller, K.E.; Lohr, B. Nest microhabitat influences nest-site selection in dry prairie but not in pasture habitat for the endangered Florida Grasshopper Sparrow (Ammodramus savannarum floridanus). Avian Conserv. Ecol. 2020, 15, 20. [Google Scholar] [CrossRef]
- Zhang, P.; Song, J.; Yuan, H. Persistent organic pollutant residues in the sediments and mollusks from the Bohai Sea coastal areas, North China: An overview. Environ. Int. 2009, 35, 632–646. [Google Scholar] [CrossRef]
- Verzijden, M.N.; Ripmeester, E.A.P.; Ohms, V.R.; Snelderwaard, P.; Slabbekoorn, H. Immediate spectral flexibility in singing chiffchaffs during experimental exposure to highway noise. J. Exp. Biol. 2010, 213, 2575–2581. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.; Potchter, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef]
- Boggie, M.A.; Collins, D.P.; Donnelly, J.P.; Carleton, S.A. Land Use, anthropogenic disturbance, and riverine features drive patterns of habitat selection by a wintering waterbird in a semi-arid environment. PLoS ONE 2018, 13, e206222. [Google Scholar] [CrossRef]
- Brehm, A.M.; Mortelliti, A. Land-use change alters associations between personality and microhabitat selection. Ecol. Appl. 2021, 31, e02443. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, P.; Lehikoinen, P.; Thorogood, R.; Lehikoinen, A. Snow depth drives habitat selection by overwintering birds in built-up areas, farmlands and forests. J. Biogeogr. 2022, 49, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Meager, J.J.; Schlacher, T.A.; Nielsen, T. Humans alter habitat selection of birds on ocean-exposed sandy beaches. Divers. Distrib. 2012, 18, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Xu, J.; Wang, Y. Human infrastructure development drives decline in suitable habitat for Reeves’s pheasant in the Dabie Mountains in the last 20 years. Glob. Ecol. Conserv. 2020, 22, e00940. [Google Scholar] [CrossRef]
- Liljesthröm, M.; Schiavini, A.; Sáenz Samaniego, R.A.; Fasola, L.; Raya Rey, A. Kelp Geese (Chloephaga hybrida) and Flightless Steamer-Ducks (Tachyeres pteneres) in the Beagle Channel: The importance of islands in providing nesting habitat. Wilson J. Ornithol. 2013, 125, 583–591. [Google Scholar] [CrossRef]
- Mangelinckx, J.M.; Brown, S.R.; Allen, R.B.; Sullivan, K.; Blomberg, E.J. Effects of forest characteristics on ruffed grouse nesting ecology in central Maine, USA. Wildl. biol. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Natsukawa, H.; Mori, K.; Komuro, S.; Shiokawa, T.; Umetsu, J.; Ichinose, T. Environmental factors affecting the reproductive rate of Urban Northern Goshawks. J. Raptor Res. 2019, 53, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Maziarz, M.; Grendelmeier, A.; Wesołowski, T.; Arlettaz, R.; Broughton, R.K.; Pasinelli, G. Patterns of predator behaviour and Wood Warbler Phylloscopus sibilatrix nest survival in a primaeval forest. Ibis 2018, 161, 854–866. [Google Scholar] [CrossRef] [Green Version]
- Virgili, A.; Racine, M.; Authier, M.; Monestiez, P.; Ridoux, V. Comparison of habitat models for scarcely detected species. Ecol. Model. 2017, 346, 88–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Ji, Y.; Zhang, C.; Ren, Y.; Xue, Y. Comparison of habitat models in quantifying the spatio-temporal distribution of small yellow croaker (Larimichthys polyactis) in Haizhou Bay, China. Estuar. Coast. Shelf Sci. 2021, 261, 107512. [Google Scholar] [CrossRef]
- Thuiller, W. Patterns and uncertainties of species’ range shifts under climate change. Glob. Chang. Biol. 2004, 10, 2020–2027. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- De Marco, P.; Nóbrega, C.C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 2018, 13, e202403. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Alves, P.; Honrado, J.; Lomba, A. Improving the assessment and reporting on rare and endangered species through species distribution models. Glob. Ecol. Conserv. 2014, 2, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera Arroita, G.; Lahoz Monfort, J.J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Grenouillet, G.; Buisson, L.; Casajus, N.; Lek, S. Ensemble modelling of species distribution: The effects of geographical and environmental ranges. Ecography 2011, 34, 9–17. [Google Scholar] [CrossRef]
- Girardello, M.; Morelli, F. Modelling the environmental niche of a declining farmland bird species. Ital. J. Zoolog. 2012, 79, 434–440. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Lin, J.; Wen, C.; Lin, Z.; Shi, Q.; Huang, H.; Cheng, S.; Xiao, H. Prelim of Biology of the Blue-crowned Laughingthrush Garrulax courtoisi in Wuyuan. Chin. J. Zool. 2017, 52, 167–175. [Google Scholar]
- Li, X. Chinese Key Protected Wildlife List’ interpretation of the second—Birds. Encycl. Knowl. 2021, 14, 40–49. [Google Scholar]
- Zhang, W.; Shi, J.; Huang, H.; Liu, T. The impact of disturbance from photographers on the Blue-crowned Laughingthrush (Garrulax courtoisi). Avian Conserv. Ecol. 2017, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Yu, B.; Liao, W. A Study on the Habitat of Garrulax galbanus Courtoisi in Wuyuan, Jiangxi Province. Acta Agric. Univ. Jiangxiensis 2006, 28, 907–911. [Google Scholar]
- Shi, J. Breeding Ecology and Population Viability Analysis of Garrulax courtoisi in Wuyuan, Jiangxi Province. Master’s Thesis, Northeast Forestry University, Harbin, China, 2017. [Google Scholar]
- Liu, T.; Xu, Y.; Mo, B.; Shi, J.; Cheng, Y.; Zhang, W.; Lei, F. Home range size and habitat use of the blue-crowned laughingthrush during the breeding season. PeerJ 2020, 8, e8785. [Google Scholar] [CrossRef]
- Bibby, C.J.; Burgess, N.D.; Hill, D.A. Bird Census Techniques, 2nd ed.; Elsevier: Cambridge, UK, 2000; pp. 259–271. [Google Scholar]
- Liao, W.; Hong, Y.; Yu, S.; Ouyang, X.; He, G. A study on the propagation habitat of Pterorhinus galbanus Courtoisi and the relationship of the birds with village forests in Wuyuan, Jiangxi Province. Acta Agric. Univ. Jiangxiensis 2007, 29, 837–841. [Google Scholar]
- Lu, N.; Jing, Y.; Lloyd, H.; Sun, Y. Assessing the distributions and potential risks from climate change for the Sichuan Jay (Perisoreus internigrans). Ornithol. Appl. 2012, 114, 365–376. [Google Scholar]
- Wang, C.; Dong, B.; Zhu, M.; Huang, H.; Cui, Y.; Gao, X.; Liu, L. Habitat selection of wintering cranes (Gruidae) in typical lake wetland in the lower reaches of the Yangtze River, China. Environ. Sci. Pollut. Res. 2019, 26, 8266–8279. [Google Scholar] [CrossRef]
- Gonzalez-Oreja, J.A. Applying multivariate analyses to the study of bird-habitat relationships: A case study with montane, non-forest passerines. Ardeola 2003, 50, 47–58. [Google Scholar]
- Askaripour, N.; Ashrafi, S.; Ara, S.R.; Naimi, B. Understanding the summer roosting habitat selection of the greater mouse-tailed bat (Rhinopoma microphyllum) and the small mouse-tailed bat (Rhinopoma muscatellum) in Iran. Mammal Res. 2022, 67, 483–497. [Google Scholar] [CrossRef]
- Jones-Farrand, D.T.; Fearer, T.M.; Thogmartin, W.E.; Iii FR, T.; Nelson, M.D.; Tirpak, J.M. Comparison of statistical and theoretical habitat models for conservation planning: The benefit of ensemble prediction. Ecol. Appl. 2011, 21, 2269–2282. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Freiría, F.; Argaz, H.; Fahd, S.; Brito, J.C. Climate change is predicted to negatively influence Moroccan endemic reptile richness. Implications for conservation in protected areas. Sci. Nat. 2013, 100, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Naimi, B.; Araújo, M.B. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Bista, M.; Panthi, S.; Weiskopf, S.R. Habitat overlap between Asiatic black bear Ursus thibetanus and red panda Ailurus fulgens in Himalaya. PLoS ONE 2018, 13, e203697. [Google Scholar] [CrossRef] [PubMed]
- Kindt, R. Ensemble species distribution modelling with transformed suitability values. Environ. Modell. Softw. 2018, 100, 136–145. [Google Scholar] [CrossRef]
- Hijmans, R.J. Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology 2012, 93, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Meza-Joya, F.L.; Rojas-Morales, J.A.; Ramos, E. Predicting distributions of rare species: The case of the false coral snake Rhinobothryum bovallii (Serpentes: Colubridae). Phyllomedusa 2020, 19, 141–164. [Google Scholar] [CrossRef]
- Zuo, L. Wuyuan Scenic Forest Secret Realm Life is so noisy. For. Hum. 2016, 318, 32–61. [Google Scholar]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Aanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Atich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef]
- Samantara, M.K.; Padhi, R.K.; Sowmya, M.; Kumaran, P.; Satpathy, K.K. Heavy metal contamination, major ion chemistry and appraisal of the groundwater status in coastal aquifer, Kalpakkam, Tamil Nadu, India. Groundw. Sustain. Dev. 2017, 5, 49–58. [Google Scholar] [CrossRef]
- Shu, W.; Wang, P.; Xiao, H.; Liu, J.; Zhao, J.; Yu, X. Hydrochemical characteristics and influencing factors in the Le’an River, Poyang Lake Basin. Resour. Environ. Yangtze Basin 2019, 28, 681–690. [Google Scholar]
- Hong, Y.; Zheng, P.; Liu, Z.; He, F. Rediscovery of Pterorhinus galbanus in Wuyuan, China. Zool. Res. 2002, 23, 383–404. [Google Scholar]
- Huang, H. Study on Habitat Selection and Influence Factors of the Blue-Crowned Laughingthrush (Pterorhinus courtoisi). Master’s Thesis, Northeast Forestry University, Harbin, China, 2016. [Google Scholar]
- Kontsiotis, V.J.; Valsamidis, E.; Liordos, V. Organization and differentiation of breeding bird communities across a forested to urban landscape. Urban For. Urban Green. 2019, 38, 242–250. [Google Scholar] [CrossRef]
- Dabone, C.; Buij, R.; Oueda, A.; Adjakpa, J.B.; Guenda, W.; Weesie, P. Impact of human activities on the reproduction of Hooded Vultures Necrosyrtes monachus in Burkina Faso. Ostrich 2019, 90, 53–61. [Google Scholar] [CrossRef]
- Burger, J.; Zappalorti, R.T.; Gochfeld, M.; Devito, E. The importance of paleodunes as nesting habitat for Northern Pine Snakes (Pituophis melanoleucus melanoleucus): Risk from off-road vehicles in the New Jersey Pine Barrens. Urban Ecosyst. 2022, 25, 411–422. [Google Scholar] [CrossRef]
- Rytwinski, T.; Fahrig, L. Why are some animal populations unaffected or positively affected by roads? Oecologia 2013, 173, 1143–1156. [Google Scholar] [CrossRef]
- Vermeulen, H. Corridor function of a road verge for dispersal of stenotopic heathland ground beetles Carabidae. Biol. Conserv. 1994, 69, 339–349. [Google Scholar] [CrossRef]
- Vermeulen, H.; Opdam, P. Effectiveness of roadside verges as diffusion corridors for small ground-dwelling animals—A simulation study. Landsc. Urban Plan. 1995, 31, 233–248. [Google Scholar] [CrossRef]
- Huang, H.; Liu, T.; Shi, J.; Liu, P.; Zhang, W. Habitat selection of the Blue-crowned laughingthrush during the breeding season. Acta Ecol. Sin. 2018, 38, 493–501. [Google Scholar]
- Zhang, W. The covenant between the Blue-crowned Laughingthrush and the ancient tree of Wuyuan. For. Hum. 2016, 318, 148–153. [Google Scholar]
- Hong, Y.; Hu, S.; Chen, S.; Li, Z.; Lin, D. Wuyuan Ancient Village with green trees and green houses. For. Hum. 2014, 294, 178–183. [Google Scholar]
- Schwarz, C.; Trautner, J.; Fartmann, T. Common pastures are important refuges for a declining passerine bird in a pre-alpine agricultural landscape. J. Ornithol. 2018, 159, 945–954. [Google Scholar] [CrossRef]
- Morganti, M.; Cecere, J.G.; Quilici, S.; Tarantino, C.; Blonda, P.N.; Griggio, M.; Ambrosini, R.; Rubolini, D. Assessing the relative importance of managed crops and semi-natural grasslands as foraging habitats for breeding lesser kestrels Falco naumanni in southeastern Italy. Wildl. Biol. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- de Zwaan, D.R.; Alavi, N.; Mitchell, G.W.; Lapen, D.R.; Duffe, J.; Wilson, S. Balancing conservation priorities for grassland and forest specialist bird communities in agriculturally dominated landscapes. Biol. Conserv. 2022, 265, 109402. [Google Scholar] [CrossRef]
- Lack, D. Habitat selection in birds. With special reference to the effects of afforestation on the Breckland Avifauna. J. Anim. Ecol. 1933, 2, 239–262. [Google Scholar] [CrossRef]
- Li, Z.; Hu, T.; Zhai, H. Habitat selection in spring and summer of Blue-eared Pheasant in Helan Mountain National Nature Reserve. Chin. J. Wildl. 2009, 30, 310–313. [Google Scholar]
- Napal, M.; Garin, I.; Goiti, U.; Salsamendi, E.; Aihartza, J. Habitat selection by Myotis bechsteinii in the southwestern iberian peninsula. Ann. Zool. Fenn. 2010, 47, 239–250. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, S.; Chen, S. The Blue-crowned Laughingthrush is difficult to leave Wuyuan evergreen forest. For. Hum. 2013, 282, 140–143. [Google Scholar]
- Jiguet, F.; Barbet-Massin, M.; Chevallier, D. Predictive distribution models applied to satellite tracks: Modelling the western African winter range of European migrant Black Storks Ciconia nigra. J. Ornithol. 2011, 152, 111–118. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P.; Liu, C. Modelling species distributions in Britain: A hierarchical integration of climate and land-cover data. Ecography 2004, 27, 285–298. [Google Scholar] [CrossRef]
- Franklin, J.; Wejnert, K.E.; Hathaway, S.A.; Rochester, C.J.; Fisher, R.N. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers. Distrib. 2009, 15, 167–177. [Google Scholar] [CrossRef]
- Torabian, S.; Ranaei, M.; Pourmanafi, S.; Chisholm, L. A statistical comparison between less and common applied models to estimate geographical distribution of endangered species (Felis margarita) in Central Iran. Contemp. Probl. Ecol. 2018, 11, 687–696. [Google Scholar] [CrossRef]
- Iannella, M.; Cerasoli, F.; D’Alessandro, P.; Console, G.; Biondi, M. Coupling GIS spatial analysis and ensemble niche modelling to investigate climate change-related threats to the Sicilian pond turtle Emys trinacris, an endangered species from the Mediterranean. PeerJ 2018, 6, e4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Sander, H.A.; Hodson, C.B.; Macdougall, B.M. Integrating human and species habitat preferences in conservation in heterogeneous urban settings. Environ. Conserv. 2022, 49, 234–243. [Google Scholar] [CrossRef]
- Adams, E.M.; Morrison, M.L. Effects of forest stand structure and composition on Red-Breasted Nuthatches and Brown Creepers. J. Wildl. Manag. 1993, 57, 616–629. [Google Scholar] [CrossRef]
- Eyvindson, K.; Repo, A.; Burgas, D.; Mönkkönen, M. Landowner preferences and conservation prioritization: Response to Nielsen et al. Conserv. Biol. 2017, 31, 1488–1490. [Google Scholar] [CrossRef]
- Brambilla, M.; Gustin, M.; Celada, C. Species appeal predicts conservation status. Biol. Conserv. 2013, 160, 209–213. [Google Scholar] [CrossRef]
- Cardoso, P.; Stoev, P.; Georgiev, T.; Senderov, V.; Penev, L. Species Conservation Profiles compliant with the IUCN Red List of Threatened Species. Biodivers. Data J. 2016, 4, e10356. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Jiang, J.; Wang, Y.; Zhang, E.; Zhang, Y.; Cai, B. Significance of country red lists of endangered species for biodiversity conservation. Biodivers. Sci. 2020, 28, 558–565. [Google Scholar] [CrossRef]
- Xian, Y.; Lu, Y.; Liu, G. Is climate change threatening or beneficial to the habitat distribution of global pangolin species? Evidence from species distribution modeling. Sci. Total Environ. 2022, 811, 151385. [Google Scholar] [CrossRef] [PubMed]
Ecological Parameters | Method |
---|---|
Vegetation coverage | Percentage cover of nest plot and control plot (estimated by the average value of three investigator) |
DBH | The tape measure was used |
Crown breadth | Measurement with laser rangefinder |
Tree height | Measurement with laser rangefinder (if the trees are too high, visual measurement is used) |
Tree coverage | Percentage cover of tree (estimated by the average value of three investigator) |
Shrub species number | Visual counting method |
Shrub height | Measure with a tape measure or a laser rangefinder |
Shrub coverage | Percentage cover of shrub (estimated by the average value of three investigator) |
Herb average height | Average the values obtained by the laser rangefinder |
Herb maximum height | The tape measure was used |
Herb species number | Visual counting method |
Category | Variables | Type |
---|---|---|
Topography | Altitude | continuous |
Slope | continuous | |
Aspect | categorical | |
Land use/Land cover | Land cover (LC) | categorical |
Distance to evergreen broadleaf forests (DTEB) | continuous | |
Distance to evergreen needleleaf forests (DTEN) | continuous | |
Distance to deciduous broadleaf forests (DTDB) | continuous | |
Distance to mixed forests (DTMF) | continuous | |
Distance to waterways (DTW) | continuous | |
Human disturbance | Distance to roads (DTR) | continuous |
Ecological Factor | Nest Plot (n = 36) | Control Plot (n = 30) | H Test | p |
---|---|---|---|---|
Vegetation coverage (%) | 80.000 ± 18.941 | 83.267 ± 10.389 | 54.465 | <0.001 |
DBH (cm) | 45.081 ± 35.001 | 34.900 ± 16.509 | 68 | 0.198 |
Crown breadth (m2) | 61.513 ± 49.035 | 60.010 ± 45.447 | 68 | 0.198 |
Tree height (m) | 13.262 ± 5.760 | 9.958 ± 5.007 | 68 | 0.131 |
Tree coverage (%) | 56.372 ± 19.678 | 52.533 ± 20.672 | 55.936 | 0.006 ** |
Shrub species number | 5.308 ± 2.150 | 5.433 ± 3.253 | 15.939 | 0.194 |
Shrub height (m) | 2.427 ± 1.383 | 2.522 ± 1.677 | 58.309 | 0.355 |
Shrub coverage (%) | 16.897 ± 21.172 | 26.067 ± 23.414 | 48.951 | 0.016 * |
Herb maximum height (cm) | 123.808 ± 55.560 | 2.659 ± 7.029 | 65.995 | 0.018 * |
Herb average height (cm) | 45.058 ± 18.195 | 5.435 ± 13.553 | 58.681 | 0.003 ** |
Herb species number | 11.564 ± 5.058 | 32.300 ± 8.112 | 60.314 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Tian, S.; Liu, Z.; Xu, J. Nesting Habitat Selection and Suitable Breeding Habitat of Blue-Crowned Laughingthrush: Implication on Its Habitat Conservation. Forests 2023, 14, 1139. https://doi.org/10.3390/f14061139
Huang X, Tian S, Liu Z, Xu J. Nesting Habitat Selection and Suitable Breeding Habitat of Blue-Crowned Laughingthrush: Implication on Its Habitat Conservation. Forests. 2023; 14(6):1139. https://doi.org/10.3390/f14061139
Chicago/Turabian StyleHuang, Xinjie, Shan Tian, Zhengxiao Liu, and Jiliang Xu. 2023. "Nesting Habitat Selection and Suitable Breeding Habitat of Blue-Crowned Laughingthrush: Implication on Its Habitat Conservation" Forests 14, no. 6: 1139. https://doi.org/10.3390/f14061139