Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Rearing Conditions
2.2. Mating Test
2.3. Morphological Measurements
2.4. Data Analyses
3. Results
3.1. Sexual Selection on Female Traits
3.2. Sexual Selection on Male Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C.R. The Descent of Man, and Selection in Relation to Sex; John Murray: London, UK, 1871. [Google Scholar]
- Jennions, M.D.; Petrie, M. Variation in Mate Choice and Mating Preferences: A Review of Causes and Consequences. Biol. Rev. 1997, 72, 283–327. [Google Scholar] [CrossRef]
- Trivers, R.L. Parental Investment and Sexual Selection; Aldine Publishing: Chicago, IL, USA, 1972. [Google Scholar]
- Tregenza, T.; Wedell, N. Genetic Compatibility, Mate Choice and Patterns of Parentage: Invited Review. Mol. Ecol. 2000, 9, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Edward, D.A.; Chapman, T. The Evolution and Significance of Male Mate Choice. Trend. Ecol. Evol. 2011, 26, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Pollo, P.; Nakagawa, S.; Kasumovic, M.M. The Better, the Choosier: A Meta-Analysis on Interindividual Variation of Male Mate Choice. Ecol. Lett. 2022, 25, 1305–1322. [Google Scholar] [CrossRef] [PubMed]
- Bertram, S.M.; Loranger, M.J.; Thomson, I.R.; Harrison, S.J.; Ferguson, G.L.; Reifer, M.L.; Gowaty, P.A. Choosy Males in Jamaican Field Crickets. Anim. Behav. 2017, 133, 101–108. [Google Scholar] [CrossRef]
- Bateman, A.J. Intra-sexual Selection in Drosophila. Heredity 1948, 2, 349–368. [Google Scholar] [CrossRef]
- Andersson, M. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Danielsson, I. Antagonistic Pre- and Post-copulatory Sexual Selection on Male Body Size in a Water Strider (Gerris lacustris). Proc. R. Soc. Lond. B. Biol. Sci. 2001, 268, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Marescalchi, O.; Francardi, V.; Mantovani, B. Taxonomy and Phylogeny of European Monochamus species: First Molecular and Karyological Data. J. Zool. Syst. Evol. Res. 2005, 43, 1–7. [Google Scholar] [CrossRef]
- Hu, S.; Sun, M.; Luo, L.P. Research Progress on Bioecological Characteristics and Control Measures of Monochamus saltuarius. Forest Sci. Technol. 2023, 11, 27–31. [Google Scholar]
- Zhao, S.G. Advances in Studies on Biological and Ecological Characteristics of Monochamus saltuarius. Forest Pest and Disease 2021, 40, 37–43. [Google Scholar]
- Shi, Y.; Zhang, Y.L.; Wang, J.; Zheng, Y.A. Distribution Rule of Monochamus saltuarius Larvae in the Trunk of Pinus koraiensis. Forest Res. 2022, 58, 128–133. [Google Scholar]
- Pan, J.L.; Li, J.; Dong, Y.Q. Feeding Preference of Monochamus saltuarius Gebler (Coleoptera: Cerambycidae) for Pinus koraiensis, Pinus tabulaeformis and Larix kaempferi. Forest Pest and Disease 2020, 39, 19–22. [Google Scholar]
- Li, M.; Li, H.; Sheng, R.C.; Sun, H.; Sun, S.H.; Chen, F.M. The First Record of Monochamus saltuarius (Coleoptera; Cerambycidae) as Vector of Bursaphelenchus xylophilus and Its New Potential Hosts in China. Insects 2020, 11, 636. [Google Scholar] [CrossRef]
- Wu, Y.; Wickham, J.D.; Zhao, L.; Sun, J. CO2 Drives the Pine Wood Nematode off Its Insect Vector. Curr. Biol. 2019, 29, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.R. Epidemic Status of Pine Wilt Disease in China Prevention and Control Techniques and Counter Measures. Forest Res. 2019, 55, 1–10. [Google Scholar]
- Kwon, H.J.; Jung, J.K.; Jung, C.; Han, H.; Koh, S.H. Dispersal Capacity of Monochamus saltuarius on Flight Mills. Entomol Exp. Appl. 2018, 166, 420–427. [Google Scholar] [CrossRef]
- Hou, Z.; Shi, F.; Ge, S.; Tao, J.; Ren, L.; Wu, H.; Zong, S. Comparative Transcriptome Analysis of the Newly Discovered Insect Vector of the Pine Wood Nematode in China, Revealing Putative Genes Related to Host Plant Adaptation. BMC Genom. 2021, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Shi, F.M.; Pei, J.H.; Hou, Z.H.; Zong, S.X.; Ren, L.L. Gut Bacteria Associated with Monochamus saltuarius (Coleoptera: Cerambycidae) and Their Possible Roles in Host Plant Adaptations. Front. Microbiol. 2021, 12, 211–687. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, Y.; Shi, F.; Li, M.; Zhang, S.; Yang, J.; Zong, S.; Tao, J. An Efficient and Simple Method for Collecting Haemolymph of Cerambycidae (Insecta: Coleoptera) Adults. Insects 2023, 14, 29. [Google Scholar] [CrossRef]
- Pan, L.; Li, Y.X.; Cui, R.; Lui, Z.K.; Zhang, X.Y. Monochamus saltuarius Endangers Pinus tabuliformis Carr. and Carries Bursaphelenchus xylophilus (Steiner and Buhrer) in China. Forests 2020, 11, 1051. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, X.Y. Analysis on the Trend of Invasion and Expansion of Bursaphelenchus xylophilus. Forest Pest and Disease 2018, 37, 1–4. [Google Scholar]
- Wang, J.; Shi, Y.; Fan, L.C.; Zhang, Y.L.; Zheng, Y.N. Reproductive Behavior of Monochamus saltuarius (Coleoptera: Cerambycidae). Forest Res. 2023, 36, 22–30. [Google Scholar]
- Kim, M.; Kim, J.; Han, J.H.; Kim, Y.J.; Yoon, C.; Kim, G.H. Mating Behavior of Pine Sawyer, Monochamus saltuarius Gebler (Coleoptera: Cerambycidae). J. Asia. Pac. Entomol. 2006, 9, 275–280. [Google Scholar] [CrossRef]
- Yilmaz, C.; Genc, H. Egg Production and Adult Longevity of The Olive Leaf Moth, Palpita unionalis Hübner (Lepidoptera: Pyralidae) on Selected Adult Diets. J. Tekirdag Agric. Fac. 2012, 9, 1–5. [Google Scholar]
- Jung, J.K.; Kwon, H.; Kim, J.; Nam, Y.; Kim, D.; Jung, C. Changes in Catch Rate of Monochamus saltuarius (Coleoptera: Cerambycidae) Relation to Sexual Maturation. Korean J. Appl. Entomol. 2020, 59, 295–301. [Google Scholar]
- Jikumaru, S.; Togashi, K.; Taketsune, A.; Takahashi, F. Oviposition Biology of Monochamus saltuarius (Coleoptera: Cerambycidae) at a Constant Temperature. Appl. Entomol. Zool. 1994, 29, 555–561. [Google Scholar] [CrossRef]
- Liu, L.H.; Qiu, X.Y. On the Factors Affecting the Willingness to Choose the Inherent Level of Right of Landless Farmers’ ‘Empowerment’ Mechanism. Sci. Technol. Manag. Land Resour. 2023, 40, 50–65. [Google Scholar]
- Halliday, T. The Study of Mate Choice. In Mate Choice; Bateson, P., Ed.; C.U.P.: Cambridge, UK, 1983; pp. 3–32. [Google Scholar]
- Petrie, M. Female Moorhens Compete for Small Fat Males. Science 1983, 220, 413–415. [Google Scholar] [CrossRef]
- Owens, I.P.F.; Burke, T.; Thompson, D.B.A. Extraordinary Sex-Roles in the Eurasian dotterel—Female Mating Arenas, Female-Female Competition, and Female Mate Choice. Am. Nat. 1994, 144, 76–100. [Google Scholar]
- Wang, Q.; Zeng, W.Y. Sexual Selection and Male Aggression of Nadezhdiella cantori (Hope) (Coleoptera: Cerambycidae: Cerambycinae) in Relation to Body Size. Environ. Entomol. 2004, 33, 657–661. [Google Scholar] [CrossRef]
- Yang, L.H.; Wang, Q. Precopulation Sexual Selection in Nysius huttoni White (Heteroptera: Lygaeidae) in Relation to Morphometric Traits. J. Insect. Behav. 2004, 17, 695–707. [Google Scholar] [CrossRef]
- Stuart-Smith, J.; Swain, R.; Wapstra, E. The Role of Body Size in Competition and Mate Choice in an Agamid with Female-biased Size Dimorphism. Behaviour 2007, 144, 1087–1102. [Google Scholar]
- Bussiere, L.F.; Gwynne, D.T.; Brooks, R. Contrasting Sexual Selection on Males and Females in a Role-Reversed Swarming Dance Fly, Rhamphomyia longicauda Loew (Diptera: Empididae). J. Evol. Biol. 2008, 21, 1683–1691. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Q. Form and Nature of Premating Sexual Selection in Both Sexes of a Moth. Naturwissenschaften 2010, 97, 617–625. [Google Scholar] [CrossRef]
- Wilhelm, G.; Handschuh, S.; Plant, J.; Nemeschkal, H.L. Selection Becomes Visible: Enforced Sexual Dimorphism Caused by Sexual Selection in the Weevil Rhopalapion longirostre (Olivier 1807) (Coleoptera: Curculionoidea: Brentidae). Biol. J. Linn. Soc. 2015, 115, 38–47. [Google Scholar] [CrossRef]
- Sisodia, S.; Singh, B.N. Size Dependent Sexual Selection in Drosophila ananassae. Genetica 2004, 121, 207–217. [Google Scholar] [CrossRef]
- Li, Z.; Li, D.; Xie, B.; Ji, R.; Cui, J. Effect of Body Size and Larval Experience on Mate Preference in Helicoverpa armigera (Hübner) (Lep., Noctuidae). J. Appl. Entomol. 2005, 129, 574–579. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Q. Male Moths Undertake Both Pre- and In-copulation Mate Choice Based on Female Age and Weight. Behav. Ecol. Sociobiol. 2009, 63, 801–808. [Google Scholar] [CrossRef]
- Jiménez-Pérez, A.; Wang, Q. Sexual Selection in Cnephasia jactatana (Lepidoptera: Tortricidae) in Relation to Age, Virginity, and Body Size. Ann. Entomol. 2004, 97, 819–824. [Google Scholar] [CrossRef]
- Willemart, R.H.; Osses, F.; Chelini, M.C.; Macias-Ordonez, R.; Machado, G. Sexually Dimorphic Legs in a Neotropical Harvestman (Arachnida, Opiliones): Ornament or Weapon? Behav. Proc. 2009, 80, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, A.; Alcock, J. Female Mimicry and Resource Defense Polygyny by Males of a Tropical Rove Beetle, Leistotrophus versicolor (Coleoptera: Staphylinidae). Behav. Ecol. Sociobiol. 1990, 26, 325–330. [Google Scholar] [CrossRef]
- Eberhard, B.; Gutiérrez, E. Male Dimorphisms in Beetles and Earwigs and the Question of Developmental Constraints. Evolution 1991, 45, 18–28. [Google Scholar] [CrossRef]
- Simmons, W.L.; Tomkins, L.J. Sexual Selection and the Allometry of Earwig Forceps. Evol. Ecol. 1996, 10, 97–104. [Google Scholar] [CrossRef]
- Palestrini, C.; Rolando, A.; Laiolo, P. Allometric Relationships and Character Evolution in Onthophagus taurus (Coleoptera: Scarabaeidae). Can. J. Zool. 2000, 78, 1199–1206. [Google Scholar] [CrossRef]
- Hanley, R. Mandibular Allometry and Male Dimorphism in a Group of Obligately Mycophagous Beetles (Insecta: Coleoptera: Staphylinidae: Oxyporinae). Biol. J. Linn. Soc. 2001, 72, 451–459. [Google Scholar] [CrossRef]
- Tatsuta, H.; Mizota, K.; Akimoto, S. Allometric Patterns of Heads and Genitalia in the Stag Beetle Lucanus maculifemoratus (Coleoptera: Lucanidae). Ann. Entomol. Soc. Am. 2001, 94, 462–466. [Google Scholar] [CrossRef]
- Kelly, C.D. Allometry and Sexual Selection of Male Weaponry in Wellington Tree Weta, Hemideina crassidens. Behav. Ecol. 2005, 16, 145–152. [Google Scholar] [CrossRef]
- Cothran, R.D.; Jeyasingh, P.D. Condition Dependence of a Sexually Selected Trait in a Crustacean Species Complex: Importance of the Ecological Context. Evolution 2010, 64, 2535–2546. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, R.V.; Höglund, J.; Lundberg, A. Patterns of Variation in Tail Ornament Size in Birds. Biol. J. Linn. Soc. 1988, 34, 363–374. [Google Scholar] [CrossRef]
- Baker, R.; Wilkinson, G. Phylogenetic Analysis of Sexual Dimorphism and Eye-span Allometry in Stalk-eyed Flies (Diopsidae). Evolution 2001, 55, 1373–1385. [Google Scholar]
- Partridge, L.; Hoffman, A.; Jones, J.S. Male Size and Mating Success in Drosophila melanogaster and D. pseudoobscura under Field Conditions. Anim. Behav. 1987, 35, 468–476. [Google Scholar]
- Nijhout, H.F. The Development and Evolution of Butterfly Wing Patterns; Smithsonian: Washington, DC, USA, 1991. [Google Scholar]
- Phelan, P.L.; Barker, J.C. Male Size Related to Courtship Success and Intersexual Selection on Tobacco Moth Ephesia cautella. Experientia 1986, 42, 1291–1293. [Google Scholar] [CrossRef]
- Kempenaers, B.; Verheyen, G.R.; Vandenbroeck, M.; Burke, T.; Vanbroeckhoven, C.; Dhondt, A. Extra-pair Paternity Results from Female Preference for High-quality Males in the Blue Tit. Nature 1992, 357, 494–496. [Google Scholar] [CrossRef]
- Keller, L.; Reeve, H.K. Why do Females Mate with Multiple Males? The Sexually Selected Sperm Hypothesis. Adv. Stud. Behav. 1995, 24, 291–315. [Google Scholar]
- Bissoondath, C.J.; Wiklund, C. Effect of Male Mating History and Body Size on Ejaculate Size and Quality in two Polyandrous Butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Funct. Ecol. 1996, 10, 457–464. [Google Scholar] [CrossRef]
- Kraak, S.B.M.; Bakker, T.C.M. Mutual Mate Choice in Sticklebacks: Attractive Males Choose Big Females, which Lay Big Eggs. Anim. Behav. 1998, 56, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.D. Sexual Selection, Phenotypic Variation, and Allometry in Genitalic and Non-genitalic Traits in the Sexually Size-dimorphic Stick Insect Micrarchus hystriculeus. Biol. J. Linn. Soc. 2014, 113, 471–484. [Google Scholar] [CrossRef]
- Brown, W.D. The Cause of Size-Assortative Mating in the Leaf Beetle Trirhabda canadensis (Coleoptera: Chrysomelidae). Behav. Ecol. Sociobiol. 1993, 33, 151–157. [Google Scholar] [CrossRef]
- Krishna, M.S.; Hegde, S.N. Influence of Body Size in Mating Success in three Sympatric Species of Drosophila. Ital. J. Zool. 2003, 70, 47–52. [Google Scholar] [CrossRef]
- Khadka, K.K.; Shek, J.; Hoffman, J.; Vulin, R.; Foellmer, M. Longer Antennal for Romeo: Assessing Effect of Antennal Length on Courtship and Mating Success in Male Crickets, Acheta domesticus (Orthoptera, Gryllidae). J. Insect Behav. 2012, 25, 96–103. [Google Scholar] [CrossRef]
- Sama, G. Coleoptera Cerambycidae. In Catalogo Topografico e Sinonimico; Calderini: Bologna, Italy, 1988. [Google Scholar]
- Hanks, L.M.; Millar, J.G.; Paine, T.D. Body Size Influences Mating Success of the Eucalyptus Longhorned Borer (Coleoptera: Cerambycidae). J. Insect Behav. 1996, 9, 369–382. [Google Scholar] [CrossRef]
- Saikia, K.; Thakur, N.S.A.; Ao, A.; Gautam, S. Sexual Dimorphism in Pseudonemorphus versteegi (Ritsema) (Coleoptera: Cerambycidae), Citrus Trunk Borer. Fla. Entomol. 2012, 95, 625–629. [Google Scholar] [CrossRef]
- Holwell, G.I.; Barry, K.L.; Herberstein, M.E. Mate Location, Antennal Morphology, and Ecology in Two Praying Mantids (Insecta: Mantodea). Biol. J. Linn. Soc. 2007, 91, 307–313. [Google Scholar] [CrossRef]
- Jayaweera, A.; Barry, K.L. Male Antenna Morphology and Its Effect on Scramble Competition in False Garden Mantids. Sci. Nat. 2017, 104, 75. [Google Scholar] [CrossRef] [PubMed]
- Dulling the Senses Ryan, K.M.; Sakaluk, S.K. The Role of Antennal in Materecognition, Copulation and Mate Guarding in Decorated Crickets. Anim. Behav. 2009, 77, 1345–1350. [Google Scholar] [CrossRef]
- Murakami, S.; Itoh, M.T. Removal of both Antennal Influences the Courtship and Aggressive Behaviors in Male Crickets. J. Neurobiol. 2003, 57, 110–118. [Google Scholar] [CrossRef]
- Svensson, M. Sexual Selection in Moths: The Role of Chemical Communication. Biol. Rev. Cambridge Phil. Soc. 1996, 71, 113–135. [Google Scholar] [CrossRef]
- Zeh, D.W.; Zeh, J.A. Sexual Selection and Sexual Dimorphism in the Harlequin Beetle Acrocinus longimanus. Biotropica 1992, 24, 86–96. [Google Scholar] [CrossRef]
- McLain, D.K.; Boromisa, R.D. Stabilizing Sexual Selection and Density-dependent Correlates of Copulatory Success in the Ambush Bug Phymata wolffii (Hemiptera: Reduviidae). Am. Midl. Nat. 1987, 118, 94–102. [Google Scholar] [CrossRef]
- Fea, M.; Holwell, G.I. Exaggerated Male Legs Increase Mating Success by Reducing Disturbance to Females in the Cave wētā Pachyrhamma waitomoensis. Proc. Royal Soc. B. 2018, 285, 20180401. [Google Scholar] [CrossRef]
- Suzaki, Y.; Katsuki, M.; Miyatake, T.; Okada, Y. Male Courtship Behavior and Weapon Trait as Indicators of Indirect Benefit in the Bean Bug, Riptortus pedestris. PLoS ONE 2013, 8, e83278. [Google Scholar] [CrossRef]
- Edvardsson, M.; Arnqvist, G. Copulatory Courtship and Cryptic Female Choice in Red Flour Beetles Tribolium castaneum. Proc. R. Soc. Lond. B. 2000, 267, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Trume, S.T.; Sike, D.S. Sexual Selection and Leg Morphology in Nicrophorus orbicollis and Ptomascopus morio. Entomol. Sci. 2000, 3, 585–589. [Google Scholar]
- Kelly, C.D.; Bussiere, L.F.; Gwynne, D. Sexual Selection for Male Mobility in a Giant Insect with Female-biased Size Dimorphism. Am. Nat. 2008, 172, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Bonduriansky, R. Sexual Selection and Allometry: A Critical Reappraisal of the Evidence and Ideas. Evolution 2007, 61, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, Q.; Xu, J.; Lv, J.; Qin, A.Z. Mating Behavior and Sexual Selection in a Polygamous Beetle. Curr. Zool. 2013, 59, 257–264. [Google Scholar] [CrossRef]
B | SE | Beta | t | p | VIF | |
---|---|---|---|---|---|---|
Weight | 0.984 | 0.025 | 1.013 | 39.020 | 0.000 | 1.581 |
Body length | −0.004 | 0.002 | −0.154 | −2.291 | 0.025 | 10.667 |
Antennal length | 0.002 | 0.001 | 0.126 | 2.598 | 0.011 | 5.527 |
Elytra length | −2.896 × 10−5 | 0.001 | −0.001 | −0.025 | 0.980 | 4.493 |
Elytra width | −0.006 | 0.004 | −0.051 | −1.584 | 0.117 | 2.415 |
Head width | 0.007 | 0.004 | 0.064 | 1.789 | 0.078 | 3.020 |
Abdomen length | 0.000 | 0.002 | −0.004 | −0.082 | 0.935 | 4.298 |
Fore femur length | 0.001 | 0.003 | 0.009 | 0.262 | 0.794 | 2.757 |
Fore tibia length | −0.007 | 0.002 | −0.103 | −2.928 | 0.004 | 2.887 |
Fore tarsal length | −0.004 | 0.004 | −0.039 | −0.871 | 0.386 | 4.723 |
Hind femur length | 0.000 | 0.002 | 0.004 | 0.112 | 0.911 | 2.949 |
Hind tibia length | 0.005 | 0.002 | 0.077 | 2.283 | 0.025 | 2.700 |
Hind tarsal length | 0.006 | 0.004 | 0.060 | 1.266 | 0.209 | 5.243 |
Weight | Antenal Length | Elytra Length | Elytra Width | Head Width | Abdomen Length | Fore Femur Length | Fore Tibia Length | Fore Tarsal Length | Hind Femur Length | Hind Tibia Length | |
---|---|---|---|---|---|---|---|---|---|---|---|
Antennal length | 0.089 | ||||||||||
Elytra length | 0.097 | 0.817 ** | |||||||||
Elytra width | 0.355 ** | 0.594 ** | 0.583 ** | ||||||||
Head width | 0.083 | 0.686 ** | 0.777 ** | 0.456 ** | |||||||
Abdomen length | 0.287 ** | 0.523 ** | 0.492 ** | 0.374 ** | 0.388 ** | ||||||
Fore femur length | 0.367 ** | 0.466 ** | 0.378 ** | 0.331 ** | 0.254 * | 0.704 ** | |||||
Fore tibia length | 0.285 ** | 0.485 ** | 0.517 ** | 0.432 ** | 0.431 ** | 0.638 ** | 0.544 ** | ||||
Fore tarsal length | 0.108 | 0.614 ** | 0.591 ** | 0.362 ** | 0.454 ** | 0.777 ** | 0.696 ** | 0.649 ** | |||
Hind femur length | 0.342 ** | 0.514 ** | 0.529 ** | 0.417 ** | 0.422 ** | 0.748 ** | 0.501 ** | 0.652 ** | 0.661 ** | ||
Hind tibia length | 0.192 | 0.426 ** | 0.469 ** | 0.256 * | 0.301 * | 0.556 ** | 0.476 ** | 0.714 ** | 0.661 ** | 0.472 ** | |
Hind tarsal length | 0.123 | 0.642 ** | 0.629 ** | 0.355 ** | 0.550 ** | 0.762 ** | 0.630 ** | 0.647 ** | 0.820 ** | 0.686 ** | 0.649 ** |
Morphological Characters | Female Body Size PC1 | Male Body Size PC1 |
---|---|---|
Body length | 0.517 | 0.486 |
Elytra length | 0.475 | 0.485 |
Elytra width | 0.424 | 0.451 |
Head width | 0.443 | 0.462 |
Abdomen length | 0.362 | 0.334 |
Proportion of variance | 68.984% | 79.775% |
B | SE | Beta | t | p | VIF | |
---|---|---|---|---|---|---|
Weight | 4.595 | 1.862 | 0.337 | 2.468 | 0.016 | 1.969 |
Body length | −0.143 | 0.159 | −0.609 | −0.902 | 0.370 | 48.259 |
Antennal length | −0.020 | 0.019 | −0.175 | −1.057 | 0.294 | 2.899 |
Elytra length | 0.091 | 0.198 | 0.284 | 0.462 | 0.646 | 40.091 |
Elytra width | 0.383 | 0.291 | 0.287 | 1.317 | 0.192 | 5.003 |
Head width | 0.534 | 0.303 | 0.365 | 1.762 | 0.082 | 4.546 |
Abdomen length | −0.023 | 0.089 | −0.053 | −0.258 | 0.797 | 4.402 |
Fore femur length | 0.068 | 0.108 | 0.104 | 0.631 | 0.530 | 2.899 |
Fore tibia length | 0.119 | 0.109 | 0.198 | 1.085 | 0.281 | 3.524 |
Fore tarsal length | −0.067 | 0.175 | −0.079 | −0.383 | 0.703 | 4.495 |
Hind femur length | −0.057 | 0.104 | −0.102 | −0.545 | 0.588 | 3.730 |
Hind tibia length | −0.007 | 0.121 | −0.010 | −0.055 | 0.956 | 3.519 |
Hind tarsal length | 0.031 | 0.191 | 0.031 | 0.165 | 0.870 | 3.680 |
Weight | Antennal Length | Elytra Width | Head Width | Abdomen Length | Fore Femur Length | Fore Tibia Length | Fore Tarsal Length | Hind Femur Length | Hind Tibia Length | |
---|---|---|---|---|---|---|---|---|---|---|
Antennal length | 0.551 ** | |||||||||
Elytra width | 0.491 ** | 0.650 ** | ||||||||
Head width | 0.611 ** | 0.736 ** | 0.732 ** | |||||||
Abdomen length | 0.415 ** | 0.498 ** | 0.295 ** | 0.457 ** | ||||||
Fore femur length | 0.249 * | 0.476 ** | 0.292 ** | 0.381 ** | 0.678 ** | |||||
Fore tibia length | 0.218 * | 0.351 ** | 0.181 ** | 0.335 * | 0.664 ** | 0.649 ** | ||||
Fore tarsal length | 0.265 * | 0.428 ** | 0.290 ** | 0.384 ** | 0.781 ** | 0.667 ** | 0.756 ** | |||
Hind femur length | 0.306 ** | 0.419 ** | 0.350 ** | 0.357 ** | 0.740 ** | 0.688 ** | 0.685 ** | 0.772 ** | ||
Hind tibia length | 0.229 * | 0.472 ** | 0.404 ** | 0.399 ** | 0.587 ** | 0.649 ** | 0.623 ** | 0.683 ** | 0.618 ** | |
Hind tarsal length | 0.215 * | 0.411 ** | 0.385 ** | 0.381 ** | 0.748 ** | 0.675 ** | 0.630 ** | 0.754 ** | 0.743 ** | 0.670 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wu, H.; Hou, Z.; Zong, S. Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler). Forests 2023, 14, 2312. https://doi.org/10.3390/f14122312
Zhang C, Wu H, Hou Z, Zong S. Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler). Forests. 2023; 14(12):2312. https://doi.org/10.3390/f14122312
Chicago/Turabian StyleZhang, Chuchu, Hao Wu, Zehai Hou, and Shixiang Zong. 2023. "Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler)" Forests 14, no. 12: 2312. https://doi.org/10.3390/f14122312
APA StyleZhang, C., Wu, H., Hou, Z., & Zong, S. (2023). Mating Behavior and Sexual Selection in Monochamus saltuarius (Gebler). Forests, 14(12), 2312. https://doi.org/10.3390/f14122312