Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Research Framework
3.2. Models
3.2.1. SBM Model
3.2.2. Getis-Ord (Gi*) Index and Spatial Center of Gravity Analysis
3.2.3. Panel Tobit Regression Model
3.3. Indicators and Data
3.3.1. Economic Efficiency and Eco-Efficiency Indicators
3.3.2. Indicators of Driving Factors
3.4. Data Sources
4. Results
4.1. General Trend of Eco-Efficiency of Forest Parks
4.2. Temporal and Spatial Patterns of Forest Park Eco-Efficiency
4.2.1. Spatial Distribution Characteristics
4.2.2. Spatial Hotspot Analysis
4.2.3. Spatial Center of Gravity Analysis
4.3. Coupled Analysis of the Eco-Efficiency and Economic Efficiency of Forest Parks
4.4. Driving Factors of the Eco-Efficiency of Forest Parks
5. Discussion and Future Applications
5.1. Discussion
5.2. Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S. Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Butchart, S.H.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.; Almond, R.E.; Baillie, J.E.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global biodiversity: Indicators of recent declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.E.M.; Dudley, N.; Segan, D.B.; Hockings, M. The performance and potential of protected areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- UNEP-WCMC and IUCN. Protected Planet Report 2020; Cambridge UK; UNEP-WCMC and IUCN: Gland, Switzerland, 2021. [Google Scholar]
- UNEP-WCMC and IUCN. The Protected Planet Report 2019; Cambridge UK; UNEP-WCMC and IUCN: Gland, Switzerland, 2020. [Google Scholar]
- COP15. Kunming Declaration Adopted at COP15. In Proceedings of the Conference of the Parties to the Convention on Biological Diversity Kunming, Kunming, China, 11–15 October 2021. [Google Scholar]
- Fuller, R.A.; McDonald-Madden, E.; Wilson, K.A.; Carwardine, J.; Grantham, H.S.; Watson, J.E.M.; Klein, C.J.; Green, D.C.; Possingham, H.P. Replacing underperforming protected areas achieves better conservation outcomes. Nature 2010, 466, 365–367. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef]
- Tsao, T.M.; Hwang, J.S.; Lin, S.T.; Wu, C.; Tsai, M.J.; Su, T.C. Forest bathing is better than walking in urban park: Comparison of cardiac and vascular function between urban and forest parks. Int. J. Environ. Res. Public Health 2022, 19, 3451. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.N.; Li, J.; Zhao, M.Y.; Gong, H.; Wang, L.; Zhao, L.X.; Huang, M. Analysis on the change of ecosystem service value of national forest park and its coupling with social economy in the past 40 years. Pol. J. Environ. Stud. 2022, 31, 1377–1387. [Google Scholar] [CrossRef]
- Kang, N.N.; Wang, E.R.; Yu, Y.; Duan, Z.H. Valuing recreational services of the national forest parks using a tourist satisfaction method. Forests 2021, 12, 1688. [Google Scholar] [CrossRef]
- Zhang, J.R.; Zhao, Z.B. Tourists’ perceptual presentation of national forest park—A case study of Wujin mountain national forest park. J. For. Res. 2022, 27, 15–19. [Google Scholar]
- Liu, P.; Liu, M.N.; Xia, T.T.; Wang, Y.T.; Guo, P. The relationship between landscape metrics and facial expressions in 18 urban forest parks of Northern China. Forests 2021, 12, 1619. [Google Scholar] [CrossRef]
- Morin, N.; Masse, A.; Sannier, C.; Siklar, M.; Kiesslich, N.; Sayadyan, H.; Faucqueur, L.; Seewald, M. Development and application of earth observation based machine learning methods for characterizing forest and land cover change in Dilijan national park of Armenia between 1991 and 2019. Remote Sens. 2021, 13, 2942. [Google Scholar] [CrossRef]
- Yue, Y. 5G network-oriented machine learning and national forest park ecotourism management. Neural Comput. Appl. 2022, 34, 9353–9368. [Google Scholar] [CrossRef]
- Kolodziejczyk, K. Tourism management in national parks: Sumava and Bayerischer Wald (Bavarian Forest) in the Czech-German borderland. J. Mt. Sci. 2021, 18, 2213–2239. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, A.; Seow, H.V.; Lee, L.S.; Lee, C.G. The efficiency of the hotel industry in Singapore. Tour. Manag. 2013, 37, 31–34. [Google Scholar] [CrossRef]
- Chiang, W.E.; Tsai, M.H.; Wang, L.S.M. A DEA evaluation of Taipei hotels. Ann. Tour. Res. 2004, 31, 712–715. [Google Scholar] [CrossRef]
- Corne, A. Benchmarking and tourism efficiency in France. Tour. Manag. 2015, 51, 91–95. [Google Scholar] [CrossRef]
- Holden, A. Environment and Tourism; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Stabler, M.J.; Papatheodorou, A.; Sinclair, M.T. The Economics of Tourism; Routledge: New York, NY, USA, 2009. [Google Scholar]
- Castellani, V.; Sala, S. Ecological footprint and life cycle assessment in the sustainability assessment of tourism activities. Ecol. Indic. 2012, 16, 135–147. [Google Scholar] [CrossRef]
- Kelly, J.; Haider, W.; Williams, P.W.; Englund, K. Stated preferences of tourists for eco-efficient destination planning options. Tour. Manag. 2007, 28, 377–390. [Google Scholar] [CrossRef]
- Ehrenfeld, J.R. Eco-efficiency—philosophy, theory, and tools. J. Ind. Ecol. 2005, 9, 6–8. [Google Scholar] [CrossRef]
- Schmidheiny, S. Changing Course: A Global Business Perspective on Development and the Environment; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Forrest, J.L.; Mascia, M.B.; Pailler, S.; Abidin, S.Z.; Araujo, M.D.; Krithivasan, R.; Riveros, J.C. Tropical deforestation and carbon emissions from protected area downgrading, downsizing, and degazettement (PADDD). Conserv. Lett. 2015, 8, 153–161. [Google Scholar] [CrossRef]
- Qiu, X.; Fang, Y.; Yang, X.; Zhu, F. Tourism eco-efficiency measurement, characteristics, and its influence factors in China. Sustainability 2017, 9, 1634. [Google Scholar] [CrossRef]
- Su, L.; Ji, X.R. Spatial-temporal differences and evolution of eco-efficiency in China’s forest park. Urban For. Urban Green. 2021, 57, 11. [Google Scholar] [CrossRef]
- Banks-Leite, C.; Pardini, R.; Tambosi, L.R.; Pearse, W.D.; Bueno, A.A.; Bruscagin, R.T.; Condez, T.H.; Dixo, M.; Igari, A.T.; Martensen, A.C. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 2014, 345, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Suryani, A.W.; Xing, K. Does carbon performance matter to market returns during climate policy changes? Evidence from Australia. J. Clean. Prod. 2020, 259, 10. [Google Scholar] [CrossRef]
- Butler, R.W. Tourism: An evolutionary perspective. In Tourism and Sustainable Development: Monitoring, Planning, Managing; Nelson, J.G., Butler, R.W., Wall, G., Eds.; Department of Geography Publication Series: Ontario, ON, Canada, 1993; Volume 37, pp. 27–43. [Google Scholar]
- Gössling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Li, S.D. Study on the deveoping track of china’s forest parks and forest tourism. Tour. Trib. 2007, 22, 66–72. [Google Scholar]
- Zhao, M.Y.; Chen, X.F. The development and management of forest parks in China. Sci. Silvae Sincae 2016, 52, 118–127. [Google Scholar]
- State Forestry Administration of China (Ed.) Measures of The People’s Republic of China for National Forest Park Management; State Forestry Administration of China: Beijing, China, 2011.
- General Offices of the Communist Party of China Central Committee and The State Council (Ed.) Guidance on Establishing a Protected Area System Composed Mainly of National Parks; General Offices of the Communist Party of China Central Committee and The State Council: Beijing, China, 2019.
- China National Forestry and Grassland Administration (Ed.) China Forestry and Grassland Statistical Yearbook; China Forestry Publishing House: Beijing, China, 2019. [Google Scholar]
- Cooper, W.W.; Tone, K.; Seiford, L.M. Data Envelopment Analysis: A Comprehensive Text with Models, Applications References, and DEA-Solver Software with Cdrom; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1999; pp. 145–156. [Google Scholar]
- Tone, K.; Seiford, L.M.; Cooper, W.W. Data Envelopment Analysis a Comprehensive Text with Models, Applications, References and DEA-Solver Software, 2nd ed.; Springer Science + Business Media, LLC: New York, NY, USA, 2007. [Google Scholar]
- Wang, R.; Xia, B.; Dong, S.C.; Li, Y.; Li, Z.H.; Ba, D.X.; Zhang, W.B. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability 2021, 13, 280. [Google Scholar] [CrossRef]
- Xia, B.; Dong, S.C.; Ba, D.X.; Li, Y.; Li, F.J.; Liu, H.M.; Li, Z.H.; Zhao, M.Y. Research on the Spatial Differentiation and Driving Factors of Tourism Enterprises’ Efficiency: Chinese Scenic Spots, Travel Agencies, and Hotels. Sustainability 2018, 10, 901. [Google Scholar] [CrossRef]
- Färe, R.; Crosskopf, S.; Knox Lovell, C.A. Production Frontiers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Li, Y.L.; Zuo, Z.L.; Xu, D.Y.; Wei, Y. Mining Eco-Efficiency Measurement and Driving Factors Identification Based on Meta-US-SBM in Guangxi Province, China. Int. J. Environ. Res. Public Health 2021, 18, 5397. [Google Scholar] [CrossRef] [PubMed]
- Richa, K.; Babbitt, C.W.; Gaustad, G. Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy. J. Ind. Ecol. 2017, 21, 715–730. [Google Scholar] [CrossRef]
- Rossi, S.; Colicchia, C.; Cozzolino, A.; Christopher, M. The logistics service providers in eco-efficiency innovation: An empirical study. Supply Chain. Manag. Int. J. 2013, 18, 583–603. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Zylowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA plus DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 10. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envelopment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Wang, H.K.; Luo, F. The impact of population urbanization lag on eco-efficiency: A panel quantile approach. J. Clean. Prod. 2020, 244, 11. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Gemar, G.; Gomez, T.; Caballero, R.; Sala-Garrido, R. Eco-efficiency assessment of wastewater treatment plants using a weighted Russell directional distance model. J. Clean. Prod. 2016, 137, 1066–1075. [Google Scholar] [CrossRef]
- Ramli, N.A.; Munisamy, S.; Arabi, B. Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector. Ann. Oper. Res. 2013, 211, 381–398. [Google Scholar] [CrossRef]
- Ouyang, W.D.; Yang, J.B. The network energy and environment efficiency analysis of 27 OECD countries: A multiplicative network DEA model. Energy 2020, 197, 16. [Google Scholar] [CrossRef]
- Shao, L.G.; Yu, X.; Feng, C. Evaluating the eco-efficiency of China’s industrial sectors: A two-stage network data envelopment analysis. J. Environ. Manag. 2019, 247, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Wei, Y.G.; Li, Y.; Wang, Z.C.; Zhang, J.M. China’s Provincial Eco-Efficiency and Its Driving Factors-Based on Network DEA and PLS-SEM Method. Int. J. Environ. Res. Public Health 2020, 17, 8702. [Google Scholar] [CrossRef]
- Sarkhosh-Sara, A.; Tavassoli, M.; Heshmati, A. Assessing the sustainability of high-, middle-, and low-income countries: A network DEA model in the presence of both zero data and undesirable outputs. Sustain. Prod. Consump. 2020, 21, 252–268. [Google Scholar] [CrossRef]
- Camioto, F.D.; Moralles, H.F.; Mariano, E.B.; do Rebelatto, D.A. Energy efficiency analysis of G7 and BRICS considering total-factor structure. J. Clean. Prod. 2016, 122, 67–77. [Google Scholar] [CrossRef]
- Pan, Y.; Weng, G.; Li, C.; Li, J. Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.H.; Wang, Y.Y.; Wei, G. Energy eco-efficiency: Is there any spatial correlation between different regions? Energy Policy 2020, 140, 12. [Google Scholar] [CrossRef]
- Quintano, C.; Mazzocchi, P.; Rocca, A. Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. J. Clean. Prod. 2020, 259, 19. [Google Scholar] [CrossRef]
- Yue, L.; Xue, D.; Draz, M.U.; Ahmad, F.; Li, J.; Shahzad, F.; Ali, S. The Double-Edged Sword of Urbanization and Its Nexus with Eco-Efficiency in China. Int. J. Environ. Res. Public Health 2020, 17, 446. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Dong, S.; Li, Y.; Li, Z.; Sun, D.; Zhang, W.; Li, W. Evolution characters and influencing factors of regional eco-efficiency in a developing country: Evidence from Mongolia. Int. J. Environ. Res. Public Health 2021, 18, 10719. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, G.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [Google Scholar] [CrossRef]
- Diaz-Villavicencio, G.; Didonet, S.R.; Dodd, A. Influencing factors of eco-efficient urban waste management: Evidence from Spanish municipalities. J. Clean. Prod. 2017, 164, 1486–1496. [Google Scholar] [CrossRef]
- Cheng, Y.Y.; Shao, T.Y.; Lai, H.L.; Shen, M.H.; Li, Y. Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 3814. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.F.; Fang, C.L.; Li, G.D. Spatiotemporal characteristics and influential factors of eco-efficiency in Chinese prefecture-level cities: A spatial panel econometric analysis. J. Clean. Prod. 2020, 260, 11. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (Ed.) China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2005–2020. [Google Scholar]
- National Bureau of Statistics of China (Ed.) China Environmental Statistics Yearbook; China Statistical Publishing House: Beijing, China, 2005–2020. [Google Scholar]
- Liao, J.; Yu, C.; Feng, Z.; Zhao, H.; Wu, K.; Ma, X. Spatial differentiation characteristics and driving factors of agricultural eco-efficiency in Chinese provinces from the perspective of ecosystem services. J. Clean. Prod. 2021, 288, 125466. [Google Scholar] [CrossRef]
- Yu, S.W.; Liu, J.; Li, L.X. Evaluating provincial eco-efficiency in China: An improved network data envelopment analysis model with undesirable output. Environ. Sci. Pollut. Res. 2020, 27, 6886–6903. [Google Scholar] [CrossRef]
- Peng, H.S.; Zhang, J.H.; Lu, L.; Tang, G.R.; Yan, B.J.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan national park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Buckley, R.; Brough, P.; Hague, L.; Chauvenet, A.; Fleming, C.; Roche, E.; Sofija, E.; Harris, N. Economic value of protected areas via visitor mental health. Nat. Commun. 2019, 10, 5005. [Google Scholar] [CrossRef] [Green Version]
Efficiency | First Level | Second-Level | Third-Level | Unit |
---|---|---|---|---|
economic efficiency | Input | Labour | Employees and Guides | Person |
Capital | Capital investment | 104 yuan | ||
Output | Income | Income | 104 yuan | |
eco-efficiency | Input | Labour | Employees and Guides | Person |
Capital | Capital investment | 104 yuan | ||
Ecology | Ecological construction investment | 104 yuan | ||
Land | Afforestation | Hectare | ||
Water | Water consumption | Ton | ||
Energy | Energy consumption | Tons of standard coal | ||
Output | Desirable | Income | 104 yuan | |
Park area | Hectare | |||
Undesirable | Wastewater emissions | Ton | ||
SO2 emissions | Ton |
Variable | Abbreviations | Definition | Unit |
---|---|---|---|
Eco-efficiency | EE | Calculated by SBM model with undesirable outputs | - |
Environmental regulation | ER | The proportion of the cost of the environmental and ecological protection | % |
Entertainment consumption | EC | Entertainment revenue as a percentage of total revenue | % |
Vacation consumption | VC | Food and lodging income as a proportion of total revenue | % |
Service quality | SQ | The proportion of tour guides in the total number of employees | % |
Resource quality | RQ | The proportion of national forest parks in forest parks | % |
Tourism income | TI | Average tourism income (Forest Park income/Tourist number) | CNY |
Tourist number | TN | Tourist number | people |
Variable | Abbreviations of Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Eco-Efficiency | EE | Coef. | z | p > z | Coef. | z | p > z | Coef. | z | p > z |
Environmental regulation | ER | 0.278 | 1.250 | 0.211 | ||||||
ER2 | 0.289 | 1.310 | 0.190 | |||||||
ER3 | 0.772 | 3.020 | 0.003 | |||||||
Entertainment consumption | EC | −1.027 | −2.650 | 0.008 | −0.925 | −2.300 | 0.022 | −0.558 | −1.360 | 0.175 |
Vacation consumption | VC | 0.592 | 3.000 | 0.003 | 0.617 | 2.970 | 0.003 | 0.773 | 3.590 | 0.000 |
Service quality | SQ | 1.187 | 1.890 | 0.059 | 1.359 | 2.100 | 0.036 | 1.449 | 2.180 | 0.029 |
Resource quality | RQ | −0.220 | −0.710 | 0.478 | −0.225 | −0.700 | 0.485 | −0.326 | −0.970 | 0.332 |
Tourism income | lnTI | −0.062 | −1.980 | 0.047 | −0.041 | −1.220 | 0.223 | −0.029 | −0.790 | 0.427 |
Tourist number | lnTNA | 0.083 | 1.850 | 0.064 | 0.095 | 1.980 | 0.047 | 0.081 | 1.590 | 0.112 |
_cons | 0.898 | 2.650 | 0.008 | 0.669 | 1.840 | 0.066 | 0.536 | 1.410 | 0.160 | |
log likehood | −245.652 | −229.098 | −207.996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Dong, S.; Xia, B.; Li, Y.; Li, Z.; Chen, W. Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks. Forests 2022, 13, 1406. https://doi.org/10.3390/f13091406
Zhao M, Dong S, Xia B, Li Y, Li Z, Chen W. Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks. Forests. 2022; 13(9):1406. https://doi.org/10.3390/f13091406
Chicago/Turabian StyleZhao, Minyan, Suocheng Dong, Bing Xia, Yu Li, Zehong Li, and Wuqiang Chen. 2022. "Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks" Forests 13, no. 9: 1406. https://doi.org/10.3390/f13091406
APA StyleZhao, M., Dong, S., Xia, B., Li, Y., Li, Z., & Chen, W. (2022). Effective and Sustainable Managed Protected Areas: Evaluation and Driving Factors of Eco-Efficiency of China’s Forest Parks. Forests, 13(9), 1406. https://doi.org/10.3390/f13091406