A Choice-Modeling Approach to Inform Policies Aimed at Reducing Wildfire Hazard through the Promotion of Fuel Management by Forest Owners
Abstract
:1. Introduction
1.1. The Policy Problem
1.2. Valuation Methods
1.3. The Study and Its Objectives
2. Materials and Methods
2.1. Study Area and Its Context
2.2. Survey and the Choice Experiment
2.3. Data Analysis I: Estimating the Choice Model and Marginal WTA to Subscribe Particular Fuel Management Commitments
2.4. Data Analysis II: Estimating the Marginal Cost of Avoided Burned Area for Two Higher Levels of Fuel Management at the Parish Level
3. Results
3.1. Owner’s Characteristics and Forest Management
3.2. Choice Model and Estimated Minimum Payment Required (Willingness-to-Accept) for Particular Owners to Subscribe Particular Fuel Management Commitments
3.3. Marginal Costs of Avoided Burned Area at the Parish Level
4. Discussion
4.1. Comparing Fuel Management Costs Across Commitments and Owner Types: What Do These Differences Tell Us about the Owners’ Contexts and Rationalities?
4.2. Policy Implications
4.2.1. Context-Sensitive, Cost-Effective Policies to Promote Fuel Management
4.2.2. How Far Should We Go in Fuel Management? (The Socially Optimal Fuel Management Level)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rossi, J.L. Evolving Risk of Wildfires in Europe: The Changing Nature of Wildfire Risk Calls for a Shift in Policy Focus from Suppression to Prevention; UN Office for Disaster Risk Reduction: Brussels, Belgium, 2020. [Google Scholar]
- Lee, C.; Schlemme, C.; Murray, J.; Unsworth, R. The cost of climate change: Ecosystem services and wildland fires. Ecol. Econ. 2015, 116, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.; Moreno, J.; Pereira, J.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Fernandes, P. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 2013, 110, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci. Total Environ. 2019, 666, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.D.; de Neufville, R.; Claro, J.; Oliveira, T.; Pacheco, A.P. Forest fire management to avoid unintended consequences: A case study of Portugal using system dynamics. J. Environ. Manag. 2013, 130, 1–9. [Google Scholar] [CrossRef]
- Badgon, B.; Huang, C.H. Review of Economic Benefits from Fuel Reduction Treatments in Fire Prone Forests on the Southwestern US; Southwest Fire Science Consortium, Northern Arizona University: Flagstaff, AZ, USA, 2016; 11p. [Google Scholar]
- Busby, G.; Albers, H. Wildfire risk management on a landscape with public and private ownership: Who pays for protection? Environ. Manag. 2010, 45, 296–310. [Google Scholar] [CrossRef]
- Prante, T.; Little, J.M.; Jones, M.; McKeed, M.; Berrens, R. Inducing private wildfire risk mitigation: Experimental investigation of measures on adjacent public lands. J. For. Econ. 2011, 17, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Pra, A.; Masiero, M.; Barreiro, S.; Tomé, M.; De Arano, I.M.; Orradre, G.; Onaindia, A.; Brotto, L.; Pettenella, D. Forest plantations in Southwestern Europe: A comparative trend analysis on investment returns, markets and policies. For. Policy Econ. 2019, 109, 102000. [Google Scholar] [CrossRef]
- Santos, J.L.; Madureira, L.; Ferreira, A.C.; Espinosa, M.; Paloma, S.G. Building an empirically-based framework to value multiple public goods of agriculture at broad supranational scales. Land Use Policy 2016, 53, 56–70. [Google Scholar] [CrossRef]
- Radich, M.C.; Baptista, F.O. Floresta e Sociedade: Um Percurso (1875–2005). Silva Lusit. 2005, 13, 143–157. [Google Scholar]
- Canadas, M.J.; Novais, A.; Marques, M. Proprietários florestais, políticas e Territórios: Incêndios e a gestão do Espaço Rural [Forest Owners, Policies and Territories: Wildfires and Rural Areas Management]; ANIMAR: Lisboa, Portugal, 2014. [Google Scholar]
- Loomis, J.; González-Caban, A. Contingent valuation of fuel hazard reduction treatments. In The Economics of Forest Disturbances: Wildfires, Storms and Invasive Species; Holmes, T.P., Prestemon, J.P., Abt, K.L., Eds.; Springer: Newton, NC, USA, 2008; pp. 229–243. [Google Scholar]
- Loomis, J.; Hung, L.; González-Caban, A. Willingness to pay function for two fuel treatments to reduce wildfire acreage burned: A scope teste and comparison of White and Hispanic households. For. Policy Econ. 2009, 11, 155–160. [Google Scholar] [CrossRef]
- Loomis, J.; González-Caban, A. Forest service use of nonmarket valuation in fire economics: Past, present and future. J. For. 2010, 108, 389–396. [Google Scholar]
- Varela, E.; Jacobsen, J.B.; Soliño, M. Understanding the heterogeneity of social preferences for fire prevention management. Ecol. Econ. 2014, 106, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Varela, E.; Giergiczny, M.; Riera, P.; Mahieu, P.A.; Soliño, M. Social preferences for fuel break management programs in Spain: A choice modelling application to prevention of forest fires. Int. J. Wildland Fire 2014, 23, 281–289. [Google Scholar] [CrossRef]
- Durán-Medraño, R.; Varela, E.; Garza-Gil, D.; Prada, A.; Vázquez, M.; Soliño, M. Valuation of terrestrial and marine biodiversity losses caused by forest wildfires. J. Behav. Exp. Econ. 2017, 75, 88–95. [Google Scholar] [CrossRef]
- Alló, M.; Loureiro, M.L. Assessing preferences for wildfire prevention policies in Spain. For. Policy Econ. 2020, 115, 102145. [Google Scholar] [CrossRef]
- Jarret, A.; Gan, J.; Johnson, C.; Munn, I. Landowner awareness and adoption of wildfire programs in the Southern United States. J. For. 2009, 107, 113–118. [Google Scholar]
- Crowley, C.; Malik, A.; Amacher, G.; Haight, R. Adjacency externalities and forest fire prevention. Land Econ. 2009, 85, 162–185. [Google Scholar] [CrossRef]
- Cooper, T.; Hart, K.; Baldock, D. Provision of Public Goods through Agriculture in the European Union; Institute for European Environmental Policy: London, UK, 2009. [Google Scholar]
- Zahrnt, V. Public Money for Public Goods: Winners and Losers from CAP Reform; ECIPE working paper No. 739-2016-50917; European Centre for International Political Economy (ECIPE): Brussels, Belgium, 2009. [Google Scholar]
- Bateman, I.J.; Balmford, B. Public funding for public goods: A post-Brexit perspective on principles for agricultural policy. Land Use Policy 2018, 79, 293–300. [Google Scholar] [CrossRef]
- Czúcz, B.; Arany, I.; Potschin-Young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-Young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Alliance Environnement. Evaluation Study if the Forestry Measures Under Rural Development; European Comission, Directorate-General for Agriculture and Rural Development: Brussels, Belgium, 2017. [Google Scholar]
- Bjärstig, T. The Swedish forest sector’s approach to a formalized forest policy within the EU. For. Policy Econ. 2013, 26, 131–137. [Google Scholar] [CrossRef]
- Varela, E.; Górriz-Mifsud, E.; Ruiz-Mirazo, J.; López-i-Gelats, F. Payments for targeted grazing: Integrating local sheperds into wildfire prevention. Forests 2018, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Kilgore, M.; Ellefson, P.; Funk, T.; Frey, G. Private forest owners and tax incentive programs in the United States: A national review and analysis of ecosystem services promoted, landowner participation, forestland area enrolled, and magnitude of tax benefits provided. Forest Policy Econ. 2018, 97, 33–40. [Google Scholar] [CrossRef]
- Rummer, B. Assessing the cost of fuel reduction treatments: A critical review. For. Policy Econ. 2008, 10, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.; Blamey, R. (Eds.) The Choice Modelling Approach to Environmental Valuation; Edward Elgar Publishing: Cheltenham, UK, 2001. [Google Scholar]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Özdemiroglu, E.; et al. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Mavsar, R.; Japelj, A.; Kovač, M. Trade-offs between fire prevention and provision of ecosystem services in Slovenia. For. Policy Econ. 2013, 29, 62–69. [Google Scholar] [CrossRef]
- Madureira, L.; Magalhães, P.; Silva, P.G.; Marinho, C.; Oliveira, R. Economia dos Serviços de Ecossistema: Um Guia para Conhecer e Valorizar Serviços de Agroecossistemas em Áreas Protegidas de Montanha; Quercus–Associação Nacional de Conservação da Natureza: Lisboa, Portugal, 2013; 146p. [Google Scholar]
- Christensen, T.; Pedersen, A.B.; Nielsen, H.O.; Mørkbak, M.R.; Hasler, B.; Denver, S. Determinants of farmers’ willingness to participate in subsidy schemes for pesticide-free buffer zones: A choice experiment study. Ecol. Econ. 2011, 70, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Duke, J.M.; Borchers, A.M.; Johnston, R.J.; Absetz, S. Sustainable agricultural management contracts: Using choice experiments to estimate the benefits of land preservation and conservation practices. Ecol. Econ. 2012, 74, 95–103. [Google Scholar] [CrossRef]
- Le Coent, P.; Préget, R.; Thoyer, S. Compensating environmental losses versus creating environmental gains: Implications for biodiversity offsets. Ecol. Econ. 2017, 142, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Ruto, E.; Garrod, G. Investigating farmers’ preferences for the design of agri-environment schemes: A choice experiment approach. J. Environ. Plan. Manag. 2009, 52, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Goded, M.; Barreiro-Hurlé, J.; Ruto, E. What do farmers want from agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 2010, 61, 259–273. [Google Scholar] [CrossRef]
- Broch, S.W.; Vedel, S.E. Using choice experiments to investigate the policy relevance of heterogeneity in farmer agri-environmental contract preferences. Environ. Resour. Econ. 2012, 51, 561–581. [Google Scholar] [CrossRef]
- Vedel, S.E.; Jacobsen, J.B.; Thorsen, B.J. Contracts for afforestation and the role of monitoring for landowners’ willingness to accept. For. Policy Econ. 2015, 51, 29–37. [Google Scholar] [CrossRef]
- Lienhoop, N.; Brouwer, R. Agri-environmental policy valuation: Farmers’ contract design preferences for afforestation schemes. Land Use Policy 2015, 42, 568–577. [Google Scholar] [CrossRef]
- Santos, R.; Clemente, P.; Brouwer, R.; Antunes, P.; Pinto, R. Landowner preferences for agri-environmental agreements to conserve the montado ecosystem in Portugal. Ecol. Econ. 2015, 118, 159–167. [Google Scholar] [CrossRef]
- Horne, P. Forest owners’ acceptance of incentive based policy instruments in forest biodiversity conservation: A choice experiment based approach. Silva Fenn. 2006, 40, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Lindhjem, H. 20 years of stated preference valuation of non-timber benefits from Fennoscandian forests: A meta-analysis. J. For. Econ. 2007, 12, 251–277. [Google Scholar] [CrossRef] [Green Version]
- Vedel, S.E.; Jacobsen, J.B.; Thorsen, B.J. Forest owners’ willingness to accept contracts for ecosystem service provision is sensitive to additionality. Ecol. Econ. 2015, 113, 15–24. [Google Scholar] [CrossRef]
- Stevens, T.H.; White, S.; Kittredge, D.B.; Dennis, D. Factors affecting NIPF landowner participation in management programs: A Massachusetts case study. J. For. Econ. 2002, 8, 169–184. [Google Scholar]
- Kang, M.J.; Siry, J.P.; Colson, G.; Ferreira, S. Do forest property characteristics reveal landowners’ willingness to accept payments for ecosystem services contracts in southeast Georgia, US? Ecol. Econ. 2019, 161, 144–152. [Google Scholar] [CrossRef]
- Fischhoff, B.; Furby, L. Measuring values: A conceptual framework for interpreting transactions with special reference to contingent valuation of visibility. J. Risk Uncertain. 1988, 1, 147–184. [Google Scholar] [CrossRef]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resources for the Future: Washington, DC, USA, 1989. [Google Scholar]
- Lindhjem, H.; Mitani, Y. Forest owners’ willingness to accept compensation for voluntary conservation: A contingent valuation approach. J. For. Econ. 2012, 18, 290–302. [Google Scholar]
- Pereira, J.M.; Benali, A.; Sá, A.; Le Page, Y.; Barreiro, S.; Rua, J.; Tomé, M.; Santos, J.L.; Canadas, M.J.; Martins, A.; et al. Alvares—um Caso de Resiliência ao Fogo (Relatório Técnico); Instituto Superior de Agronomia: Lisbon, Portugal, 2019. [Google Scholar]
- Verde, J.C.; Zêzere, J.L. Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat. Hazards Earth Syst. Sci. 2010, 10, 485–497. [Google Scholar] [CrossRef]
- INE. X Recenseamento Geral da População. Tomo I. Vol1. Prédios e fogos. In População—Dados Retrospectivos (Distritos, Concelhos e Freguesias); Instituto Nacional de Estatística: Lisboa, Portugal, 1960. [Google Scholar]
- INE. Censos 2011 Resultados Definitivos-Portugal; Instituto Nacional de Estatística: Lisboa, Portugal, 2012.
- Riera, P.; Signorello, G.; Thiene, M.; Mahieu, P.A.; Navrud, S.; Kaval, P.; Rulleau, B.; Mavsar, R.; Madureira, L.; Meyerhoff, J.; et al. Non-market valuation of forest goods and services: Good practice guidelines. J. For. Econ. 2012, 18, 259–270. [Google Scholar] [CrossRef]
- Pereira, J.S. (Ed.) Incêndios Florestais em Portugal: Caracterização, Impactes e Prevenção; Instituto Superior de Agronomia: Lisbon, Portugal, 2006; ISBN 972-8669-17-8. [Google Scholar]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in Southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, T.; Barros, A.; Ager, A.; Fernandes, P. Assessing the effect of fuel break network to reduce burnt area and wildfire risk transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar] [CrossRef]
- Holmes, T.P.; Adamowicz, W.L.; Carlsson, F. Choice experiments. In A Primer on Nonmarket Valuation; Springer: Dordrecht, The Netherlands, 2017; pp. 133–186. [Google Scholar]
- Jaccard, J. Interaction Effects in Logistic Regression (No. 135); Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-135; Sage: Thousand Oacks, CA, USA, 2001. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Prentice Hall: Uppersaddle River, NJ, USA, 2010; 816p. [Google Scholar]
- Cameron, T.A.; James, M.D. Efficient estimation methods for “closed-ended” contingent valuation surveys. Rev. Econ. Stat. 1987, 69, 269–276. [Google Scholar] [CrossRef]
- Santos, J.L. The Economic Valuation of Landscape Change: Theory and Policies for Land Use and Conservation; Edward Elgar Publishing: Cheltenham, UK, 1998. [Google Scholar]
- Hanemann, M. Welfare Evaluations in Contingent Valuation Experiments with Discrete Responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Borrooah, V.K. Logit and Probit: Ordered and Multinomial Models; Sage University Papers Series on Quantitative Applications in the Social Sciences; Series no 07-138; Sage: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Barreiro, S.; Benali, A.; Rua, J.C.P.; Tomé, M.; Pereira, J.C. Assisting landowners in building fire-resilient landscapes using forest management driven simulations. Forests 2021, in press. [Google Scholar]
- Benali, A.; Sá, A.; Le Page, Y.; Pinto, M.M.; Nunes, S.; Pinho, J.; Pereira, J.C. Understanding the impact of different landscape-level fuel management approaches on wildfire exposure. Forests 2021, in press. [Google Scholar]
- Finney, M.A. FARSITE: Fire Area Simulator–Model Development and Evaluation; Research Paper RMRS-RP-4 Revised; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004; 47p.
- Novais, A.; Canadas, M.J. Understanding the management logic of private forest owners: A new approach. For. Policy Econ. 2010, 12, 173–180. [Google Scholar] [CrossRef]
- Canadas, M.J.; Novais, A. Bringing local socioeconomic context to the analysis of forest owners’ management. Land Use Policy 2014, 41, 397–407. [Google Scholar] [CrossRef]
- Canadas, M.J.; Novais, A. Forest owners and fuels management coordination. When neighbours’ actions matter. Scand. J. For. Res. 2019, 34, 67–77. [Google Scholar] [CrossRef]
- Greenberg, M.; Haas, C.; Cox, A.; Lowrie, K.; McComas, K.; North, W. Ten Most Important Accomplishments in Risk Analysis, 1980–2010. Risk Anal. 2012, 32, 771–781. [Google Scholar] [CrossRef]
- Wilson, R.S.; Arvai, J.L.; Arkes, H.R. My Loss Is Your Loss Sometimes: Loss Aversion and the Effect of Motivational Biases. Risk Anal. 2008, 28, 929–938. [Google Scholar] [CrossRef]
- Baptista, F.O.; Novais, A.; Canadas, M.J.; Marques, M.; Reis, P.; Oliveira, T. Proprietários, Gestão Florestal e Incêndios; Project report; ISA: Lisboa, Portugal, 2015. [Google Scholar]
- DGRF. Estratégia Nacional para as Florestas; Direcção Geral de Recursos Florestais: Lisboa, Portugal, 2006. [Google Scholar]
- Canadas, M.J.; Novais, A.; Marques, M. Wildfires, forest management and landowners’ collective action: A comparative approach at the local level. Land Use Policy 2016, 56, 179–188. [Google Scholar] [CrossRef]
- Calkin, D.; Gebert, A. Modeling fuel treatment costs on Forest Service Lands in the western US. West. J. Appl. For. 2006, 21, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Ficko, A.; Lidestav, G.; Dhubháin, A.; Karppinen, H.; Zivojinovic, I.; West, K. European private forest owner typologies: A review of methods and use. For. Policy Econ. 2019, 99, 21–31. [Google Scholar] [CrossRef]
- Martins, A.; Novais, A.; Santos, J.M.; Canadas, M.J. Modelling private owners’ choices for alternative options to achieve landscape-level management coordination. Case study in a context of high wildfire hazard. For. Policy Econ. submitted.
- CCDRC. Relatório de Incêndios na Região Centro. 17 a 21 de Junho de 2017; Pedrógão Grande, Castanheira de Pêra, Figueiró dos Vinhos, Pampilhosa da Serra, Sertã, Góis e Penela, Comissão de Coordenação e Desenvolvimento Regional do Centro: Coimbra, Portugal, 2017.
- Ager, A.; Finney, M.; McMahan, A. A wildfire risk modeling system for evaluating landscape fuel treatment strategies. In Proceedings of the Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Proceedings RMRS-P-41; Andrews, P.L., Butler, B.W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 149–162. [Google Scholar]
Attributes | Variable | Attribute Levels | Description |
---|---|---|---|
Delivering a proportion of land area to be included in fuel breaks; these would be implemented and kept by a common entity, which would support the implementation and maintenance costs | Fuel break | 0 | No loss of productive area |
15 | 15% loss of productive area | ||
30 | 30% loss of productive area | ||
Clean shrubs each 5 years in all area managed by the owner | Shrub clearing | No, yes | Not required by law, but would become mandatory after subscribing the contract |
Payment level | Payment | 20 | Monetary value (EUR/ha/year) to be received for the subscription and compliance with the fuel management commitments |
80 | |||
200 | |||
500 |
Variable | Categories | Respondents | |
---|---|---|---|
n | % | ||
Sociodemography and relationship with the forest | |||
Gender | Female | 55 | 25 |
Male | 166 | 75 | |
Age | <55 years | 42 | 19 |
55–65 years | 60 | 27 | |
≥65 years | 119 | 54 | |
Place of Residence | At the parish (Góis) | 87 | 39 |
Outside the parish (Lisbon or Coimbra) | 134 | 61 | |
Education | Without primary education | 13 | 6 |
Primary—High school | 153 | 69 | |
College degree | 55 | 25 | |
Socioeconomic group/Occupation | Active (entrepreneurial or independent activity, dependent activity, unemployed) | 105 | 48 |
Nonactive (retired, domestic, student) | 116 | 52 | |
Forest income is one of the main reasons why forest is important (1st or 2nd) | 87 | 39 | |
Forest income weight on the household income during the last 10 years | 0% | 102 | 46 |
0–10% | 108 | 49 | |
>10% | 11 | 5 | |
Forest structure and management practices | |||
Ownership size | <4 ha | 86 | 42 |
4–10 ha | 53 | 26 | |
≥10 ha | 66 | 32 | |
Dominant forest species | Only eucalyptus | 67 | 30 |
Only pine | 48 | 22 | |
Only eucalyptus and pine | 47 | 21 | |
Other type of forest stands or no response | 59 | 27 | |
Last planted species | Eucalyptus | 139 | 63 |
Pine | 20 | 9 | |
Other species | 19 | 9 | |
Does not know | 43 | 19 | |
Shrub clearing in the past 10 years in all land parcels (active management *) | Yes | 65 | 29 |
No | 156 | 71 | |
Productive interventions in the last 10 years | Shrub clearing | 143 | 65 |
Fertilization | 52 | 24 | |
Chemical treatment | 35 | 16 | |
Thinning and poles selection | 106 | 48 | |
Pruning | 82 | 37 | |
Harvesting | 179 | 81 | |
Family work—executes productive interventions and only uses family work | Yes | 58 | 26 |
No | 163 | 74 | |
Manual work—executes productive interventions and only uses manual or mechanically assisted work | Yes | 127 | 58 |
No | 94 | 43 | |
Impact of the 2017 fires | |||
Affected by 2017 wildfires | 194 | 88 | |
Intervention on forest spaces after 2017 wildfires | 103 | 47 | |
Choice experiment | |||
Fuel management attribute that would cost more | Keep a % area without trees or shrubs (15% reference level) (fuel break) | 42 | 19 |
Shrub clearing every 5 years (shrub clearing) | 174 | 79 | |
No answer | 5 | 2 |
Attributes | Model β | p | Effect on Probability of Choosing the Contract Exp (β)# |
---|---|---|---|
Fuel break | −0.010 * | <0.047 | 0.990 (1.010) |
Shrub clearing | −1.373 *** | <0.000 | 0.253 (3.947) |
Payment | 0.004 *** | <0.000 | 1.004 |
Fuel break × Active management | −0.016 (*) | <0.060 | 0.984 (1.016) |
Shrub clearing × Active management | 0.627 ** | <0.006 | 1.871 |
Number of observations: 1030 Number of respondents: 206 | Overall goodness-of-fit: | ||
−2Log-Likelihood: 1240.414 | |||
Chi-square: 187.469 *** | |||
R square Cox and Snell: 0.166 | |||
R square Nagelkerke: 0.222 | |||
Predictive capacity: 69.2% of all replies correctly predicted |
Commitment | Owner Type | Marginal Effect of Being Active | |
---|---|---|---|
Nonactive | Active | ||
Delivering 15% of land to be integrated in a fuel break | 37.5 | 97.5 | 60.0 |
Delivering 30% of land to be integrated in a fuel break | 75.0 | 195.0 | 120.0 |
Delivering 50% of land to be integrated in a fuel break | 125.0 | 325.0 | 200.0 |
Delivering all land to be integrated in a fuel break | 250.0 | 650.0 | 400.0 |
Scrub clearing once in 5 years in all land | 343.3 | 186.5 | −156.8 |
Shrub-Clearing Levels | ||||
---|---|---|---|---|
Present Situation | Moderate | High | ||
Parish area under shrub management (%) | (1a) | 22.0% | 32.3% | 40.8% |
Parish area under shrub management (ha) | (1b) | 1610 | 2364 | 2980 |
Avoided burned area (ha/year) [68,69] | (2) | - | 68.3 | 102.7 |
Marginal reduction in burned area (ha/year) | (3) | - | 68.3 | 34.4 |
Using our Choice Model | ||||
Payment level (EUR/ha/year) | (4) | 0 | 111.5 | 207.5 |
Total public expenditure (EUR/year) | (5) = (4) × (1b) | 0 | 263,069 | 618,993 |
Marginal Cost (MgC) | ||||
MgC, marginal expenditure to increase shrub management from the previous level (EUR/year) | (6) | 0 | 263,069 | 355,924 |
MgC per avoided burned area (EUR/ha/year) | (7) = (6)/(3) | 0 | 3852 | 10,347 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.L.; Martins, A.; Novais, A.; Canadas, M.J. A Choice-Modeling Approach to Inform Policies Aimed at Reducing Wildfire Hazard through the Promotion of Fuel Management by Forest Owners. Forests 2021, 12, 403. https://doi.org/10.3390/f12040403
Santos JL, Martins A, Novais A, Canadas MJ. A Choice-Modeling Approach to Inform Policies Aimed at Reducing Wildfire Hazard through the Promotion of Fuel Management by Forest Owners. Forests. 2021; 12(4):403. https://doi.org/10.3390/f12040403
Chicago/Turabian StyleSantos, José L., Ana Martins, Ana Novais, and Maria João Canadas. 2021. "A Choice-Modeling Approach to Inform Policies Aimed at Reducing Wildfire Hazard through the Promotion of Fuel Management by Forest Owners" Forests 12, no. 4: 403. https://doi.org/10.3390/f12040403
APA StyleSantos, J. L., Martins, A., Novais, A., & Canadas, M. J. (2021). A Choice-Modeling Approach to Inform Policies Aimed at Reducing Wildfire Hazard through the Promotion of Fuel Management by Forest Owners. Forests, 12(4), 403. https://doi.org/10.3390/f12040403