Genetic Diversity and Population Structure Revealed by SSR Markers on Endemic Species Osmanthusserrulatus Rehder from Southwestern Sichuan Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. Primer Screening and PCR Amplification
2.3. Data Analysis
3. Results
3.1. SSR Loci Polymorphism
3.2. Population Genetic Diversity and Mutation-Drift Equilibrium
3.3. Genetic Differentiation and Gene Flow between Populations
3.4. Population Clustering and Genetic Structure
4. Discussion
4.1. Genetic Diversity of Osmanthus serrulatus
4.2. Genetic Differentiation and Population Structure of Osmanthus serrulatus
4.3. Conservation Proposal of Osmanthus serrulatus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, M.; Qiu, L.; Wei, Z.; Green, P.S. Osmanthus. In Flora of China; Wu, Z., Raven, P., Hong, D., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 1996; Volume 15, pp. 286–292. [Google Scholar]
- Xiang, Q.B.; Liu, Y.L. An Illustrated Monograph of the Sweet Osmanthus Cultivars in China; Zhejiang Science & Technology Press: Hangzhou, China, 2008; pp. 2–12. [Google Scholar]
- Chen, L.; Yang, G.D.; Qian, H.R.; Li, L.N.; Cheng, Y. Analyses on characteristics and species diversity of Osmanthus serrulatus community in Dongla Mountain of Sichuan. J. Plant. Resour. Environ. 2017, 26, 74–83. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X.R. Reproduction system of Osmanthus serrulatus, an endemic plant to China. Sci. Silvae Sin. 2018, 54, 17–29. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X.R. Ultrastructure observation in the development of Osmanthus serrulatus seed mature. J. Cent. South. Univ. For. Technol. 2018, 38, 19–25, 34. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X.R. Analysis of community structure of Osmanthus serrulatus based on TWINSPAN classification and DCCA sequencing. Acta Ecol. Sin. 2018, 38, 3059–3068. [Google Scholar] [CrossRef]
- Yang, G.D.; Qian, H.R.; Chen, L.; Wang, X.R. Effect of soil nutrients on spatial distribution of Osmanthus serrulatus community in Dongla Mountains. Acta Bot. Boreali-Occident. Sin. 2018, 38, 343–352. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Dai, Y.; Wang, X.; Duan, Y.; Yang, G. De novo transcriptome analysis of Osmanthus serrulatus Rehd. flowers and leaves by Illumina sequencing. Biochem. Syst. Ecol. 2015, 61, 531–540. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, X.; Yang, J.; Cai, X.; Shi, Y.; Zheng, R.; Wang, Z.; Liu, J.; Yi, X.; Xiao, S.; et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Hortic. Res. 2021, 8, 98. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Wang, X.; Sylvester, S.P.; Xiang, Q.; Li, X.; Li, M.; Zhu, H.; Zhang, C.; Chen, L.; et al. Revisiting the phylogeny and taxonomy of Osmanthus (Oleaceae) including description of the new genus Chengiodendron. Phytotaxa 2020, 436, 283–292. [Google Scholar] [CrossRef]
- Chen, Y.L.; Luo, Y.S.; Tao, X.H. The genetic relationship of two new colorful sweet Osmanthus fragrans Cultivars revealed by AFLP and SSR markers. Agric. Sci. Technol. 2019, 20, 40–48. [Google Scholar] [CrossRef]
- Duan, Y.; Li, M.; Yi, X.G.; Wang, H.; Wang, X.; Xiang, Q. Assessment of genetic diversity among androdioecious ancient Osmanthus fragrans trees by SSR markers. Biochem. Syst. Ecol. 2015, 61, 179–185. [Google Scholar] [CrossRef]
- Hu, W.; Luo, Y.; Yang, Y.; Zhang, Z.Y.; Fan, D.M. Genetic diversity and population genetic structure of wild sweet osmanthus revealed by microsatellite markers. Acta Hortic. Sin. 2014, 41, 1427–1435. [Google Scholar]
- Duan, Y.; Wang, X.; Xiang, Q.; Liang, L.; Li, X.; Liu, Y.; Li, M. Genetic diversity of androdioecious Osmanthus fragrans (Oleaceae) cultivars using microsatellite markers. Appl. Plant. Sci. 2013, 1, 1200092. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Hong, D.Y. Genetic diversity and its detection methods. In Principles and Methodologies of Biodiversity Studies; Qian, Y.Q., Ma, K.P., Eds.; China Science and Technology Press: Beijing, China, 1994; pp. 123–124. [Google Scholar]
- Jump, A.S.; Marchant, R.; Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant. Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Krutovsky, K.; Neale, D.B. Forest genomics and new molecular genetic approaches to measuring and conserving adaptive genetic diversity in forest trees. In Conservation and Management of Forest Genetic Resources in Europe; Geburek, T., Turok, J., Eds.; Arbora Publishers: Zvolen, Slovakia, 2005; pp. 369–390. [Google Scholar]
- Liu, H.Y.; Zang, F.Q.; Wu, Q.C.; Ma, Y.; Zheng, Y.Q.; Zang, D.K. Genetic diversity and population structure of the endangered plant Salix taishanensis based on CDDP markers. Glob. Ecol. Conserv. 2020, 24, e1242. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Pei, S.; Ning, M.; Tang, S. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. Plant. Divers. 2020, 42, 343–350. [Google Scholar] [CrossRef]
- Soltis, P.S.; Soltis, D.E. Genetic variation in endemic and widespread plant species: Examples from Saxifragaceae and Polystichum. Aliso 1991, 13, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zheng, P.; Ni, B.; Miao, X.; Zhao, Z.; Li, M. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 2018, 50, 609–615. [Google Scholar]
- Kazemeini, F.; Asri, Y.; Mostafavi, G.; Kalvandi, R.; Mehregan, I. Assessment of genetic diversity, population structure and morphological analyses in an Iranian endemic species Rhabdosciadium aucheri Boiss. (Apiaceae) using ISSR markers. Biologia 2021, 76, 441–451. [Google Scholar] [CrossRef]
- Iwaizumi, M.; Tsuda, Y.; Ohtani, M.; Tsumura, Y.; Takahashi, M. Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. For. Ecol. Manag. 2013, 304, 407–416. [Google Scholar] [CrossRef]
- Da Silva Almeida Leal, G.; Leal, F.A.; Gomes, H.T.; de Souza, A.M.; Ribeiro, S.C.; Scherwinski-Pereira, J.E. Structure and genetic diversity of natural populations of Guadua weberbaueri in the southwestern Amazon, Brazil. J. For. Res. 2021, 32, 755–763. [Google Scholar] [CrossRef]
- Gregorius, H. Gene conservation and the preservation of adaptability. In Species Conservation: A Population-Biological Approach; Seitz, A., Loeschcke, V., Eds.; Birkhäuser Basel: Basel, Switzerland, 1991; pp. 31–47. [Google Scholar]
- Wu, Q.; Zang, F.; Ma, Y.; Zheng, Y.; Zang, D. Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers. Glob. Ecol. Conserv. 2020, 24, e1329. [Google Scholar] [CrossRef]
- Chen, L.; Li, L.; Yang, G.; Dai, Y. Microsatellites characteristics of transcriptomic sequences from Osmanthus serrulatus. Mol. Plant. Breed. 2016, 14, 959–965. [Google Scholar] [CrossRef]
- Qian, H.R.; Chen, L.; Yang, G.D.; Pan, T.T.; Wang, X.R. Optimization of SSR-PCR reaction system in Osmanthus serrulatus and rapid primer selection based on DNA mixing pool. Mol. Plant. Breed. 2019, 17, 525–530. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Fan, D.M.; Guo, S.Q.; Li, D.Z.; Zhang, Z.Y. Development of 29 microsatellite markers for Osmanthus fragrans (Oleaceae), a traditional fragrant flowering tree of China. Am. J. Bot. 2011, 98, e356–e359. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Version 1.32. Microsoft Windows-Based Freeware for Population Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Piry, S.; Luikart, G.; Cornuet, J. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Zhong, Y.; Yang, A.; Li, Z.; Zhang, H.; Liu, L.; Wu, Z.; Xu, M.; Yu, F. Genetic diversity and population genetic structure of Cinnamomum camphora in South China revealed by EST-SSR markers. Forests 2019, 10, 1019. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Bhatt, A.; Peng, Y.; Chen, W.; Gao, Y.; Zhan, X.; Zhang, Z.; Hu, W.; Song, M.; Yu, Z. Genetic diversity and population structure analysis of Emmenopterys henryi Oliv., an endangered relic species endemic to China. Genet. Resour. Crop. Evol. 2021, 68, 1135–1148. [Google Scholar] [CrossRef]
- Hague, M.T.; Routman, E.J. Does population size affect genetic diversity? A test with sympatric lizard species. Heredity 2016, 116, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors influencing levels of genetic diversity in woody plant species. New For. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Martin, S.L.; Benedict, L.; Wei, W.; Sauder, C.A.; Beckie, H.J.; Hall, L.M. High gene flow maintains genetic diversity following selection for high EPSPS copy number in the weed kochia (Amaranthaceae). Sci. Rep. 2020, 10, 18864. [Google Scholar] [CrossRef]
- Barros, J.; Winkler, F.M.; Velasco, L.A. Assessing the genetic diversity in Argopecten nucleus (Bivalvia: Pectinidae), a functional hermaphrodite species with extremely low population density and selffertilization: Effect of null alleles. Ecol. Evol. 2020, 10, 3919–3931. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.E. A clarification of the Hardy–Weinberg law. Genetics 2006, 174, 1695–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammi, A.; Siikamäki, P.; Mustajärvi, K. Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv. Biol. 1999, 13, 1069–1078. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Weibang, S.; Wen, X.; Milne, R. High genetic diversity and low differentiation of Michelia coriacea (Magnoliaceae), a critically endangered endemic in Southeast Yunnan, China. Int. J. Mol. Sci. 2012, 13, 4396–4411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.W.; Chen, S.F.; Shi, S.; Zhang, Z.; Liao, W.B.; Wu, W.; Zhou, R.C.; Fan, Q. High genetic diversity and weak population structure of Rhododendron jinggangshanicum, a threatened endemic species in Mount Jinggangshan of China. Biochem. Syst. Ecol. 2015, 58, 178–186. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Li, H. Genetic diversity, population genetic structure and protection strategies for Houpoëa officinalis (Magnoliaceae), an endangered Chinese medical plant. J. Plant. Biol. 2018, 61, 159–168. [Google Scholar] [CrossRef]
- Fan, J.J.; Zhang, X.P.; Liu, K.; Liu, H.J.; Zhang, L.; Wang, X.P.; Li, X.H. The population genetic diversity and pattern of Pteroceltis tatarinowii, a relic tree endemic to China, inferred from SSR markers. Nord. J. Bot. 2019, 37, e1922. [Google Scholar] [CrossRef]
- Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 2004, 13, 1143–1155. [Google Scholar] [CrossRef]
- Duan, Y.; Li, W.; Zheng, S.; Sylvester, S.P.; Li, Y.; Cai, F.; Zhang, C.; Wang, X. Functional androdioecy in the ornamental shrub Osmanthus delavayi (Oleaceae). PLoS ONE 2019, 14, e221898. [Google Scholar] [CrossRef]
- Zuo, M.Y. Study on the Phenotypic Variation and Genetic Diversity of Osmanthus cooperi Hemsl. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2013. [Google Scholar]
- Cristescu, R.; Sherwin, W.B.; Handasyde, K.; Cahill, V.; Cooper, D.W. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: The importance of the microsatellite structure. Conserv. Genet. 2010, 11, 1043–1049. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002; pp. 227–253. [Google Scholar]
- Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations. Volume 4. Variability within and among Natural Populations; The University of Chicago Press: Chicago, IL, USA, 1978; pp. 82–89. [Google Scholar]
- Loveless, M.D.; Hamrick, J.L. Ecological determinants of genetic structure in plant populations. Annu. Rev. Ecol. Syst. 1984, 15, 65–95. [Google Scholar] [CrossRef]
- Wang, S.Q. Genetic diversity and population structure of the endangered species Paeonia decomposita endemic to China and implications for its conservation. BMC Plant. Biol. 2020, 20, 510. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Hong, D.; Fu, C.; Cameron, K.M. Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem. Syst. Ecol. 2004, 32, 583–596. [Google Scholar] [CrossRef]
Populations | Sample Size | Locations | Longitude (E) | Latitude (N) | Altitude (m) | Habitat | Na | Ne | I | Np | Ho | He | PPL | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMS | 30 | Emeishan, Leshan | 103°20′ | 29°32′ | 2308 | Wild, along the hillside | 5.833 | 3.859 | 1.331 | 0.667 | 0.222 | 0.648 | 94.44% | 0.668 |
BCP | 16 | Jinkouhe, Leshan | 103°09′ | 29°24′ | 1940 | Wild, along the valley | 4.778 | 3.517 | 1.250 | 0.333 | 0.250 | 0.628 | 88.89% | 0.631 |
XYG | 30 | Hanyuan, Ya’an | 102°42′ | 29°27′ | 2412 | Wild, native in deep mountain | 8.222 | 4.860 | 1.630 | 1.556 | 0.289 | 0.725 | 100.00% | 0.636 |
YCP | 30 | Hanyuan, Ya’an | 102°34′ | 29°36′ | 2034 | Wild, beside the hillside with disturbance of logging and grazing | 8.500 | 5.041 | 1.648 | 3.056 | 0.359 | 0.729 | 100.00% | 0.469 |
HZP | 30 | Hanyuan, Ya’an | 102°33′ | 29°38′ | 2140 | Wild, native in deep mountain | 7.556 | 4.786 | 1.560 | 1.389 | 0.230 | 0.723 | 100.00% | 0.676 |
DLS1 | 28 | Baoxing, Ya’an | 102°33′ | 30°25′ | 2080 | Wild, along the valley with disturbance of tourism | 8.056 | 4.708 | 1.589 | 1.556 | 0.373 | 0.712 | 100.00% | 0.510 |
DLS2 | 30 | Baoxing, Ya’an | 102°32′ | 30°25′ | 2153 | Wild, along the valley | 8.389 | 5.532 | 1.779 | 0.944 | 0.323 | 0.774 | 100.00% | 0.613 |
MPZ | 11 | Lushan, Ya’an | 102°56′ | 30°22′ | 1310 | ex situ cultivating from surrounding mountains | 4.167 | 3.062 | 1.184 | 0.389 | 0.136 | 0.631 | 100.00% | 0.813 |
WZX | 25 | Lushan, Ya’an | 103°02′ | 30°27′ | 2146 | Wild, native in deep mountain | 6.056 | 3.644 | 1.325 | 0.722 | 0.273 | 0.621 | 100.00% | 0.627 |
XLXS | 32 | Dayi, Chengdu | 103°10′ | 30°39′ | 2013 | Wild, along the hillside | 7.389 | 4.799 | 1.620 | 0.722 | 0.337 | 0.745 | 100.00% | 0.594 |
mean | 26.2 | - | - | - | - | - | 6.894 | 4.381 | 1.492 | 1.133 | 0.279 | 0.694 | 98.33% | 0.623 |
Variance Source | df | SSD | MSD | Variance Components | Variance Ratio | Fst/Nm |
---|---|---|---|---|---|---|
Among populations | 9 | 932.655 | 103.628 | 1.792 | 21.55% | 0.215 ***/0.910 |
Among individuals | 252 | 2625.231 | 10.418 | 3.895 | 46.84% | |
Within individuals | 262 | 688.500 | 2.628 | 2.628 | 31.61% | |
Total | 523 | 4246.385 | 8.314 | 100.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Pan, T.; Qian, H.; Zhang, M.; Yang, G.; Wang, X. Genetic Diversity and Population Structure Revealed by SSR Markers on Endemic Species Osmanthusserrulatus Rehder from Southwestern Sichuan Basin, China. Forests 2021, 12, 1365. https://doi.org/10.3390/f12101365
Chen L, Pan T, Qian H, Zhang M, Yang G, Wang X. Genetic Diversity and Population Structure Revealed by SSR Markers on Endemic Species Osmanthusserrulatus Rehder from Southwestern Sichuan Basin, China. Forests. 2021; 12(10):1365. https://doi.org/10.3390/f12101365
Chicago/Turabian StyleChen, Lin, Tingting Pan, Huirong Qian, Min Zhang, Guodong Yang, and Xianrong Wang. 2021. "Genetic Diversity and Population Structure Revealed by SSR Markers on Endemic Species Osmanthusserrulatus Rehder from Southwestern Sichuan Basin, China" Forests 12, no. 10: 1365. https://doi.org/10.3390/f12101365
APA StyleChen, L., Pan, T., Qian, H., Zhang, M., Yang, G., & Wang, X. (2021). Genetic Diversity and Population Structure Revealed by SSR Markers on Endemic Species Osmanthusserrulatus Rehder from Southwestern Sichuan Basin, China. Forests, 12(10), 1365. https://doi.org/10.3390/f12101365