Effects of Microwave Treatment on Microstructure of Chinese Fir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microwave Treatment
2.3. Microstructure Analysis
2.4. Pore Structure Analysis
3. Results and Discussion
3.1. Microstructural Changes of MW-Treated Wood
3.2. Pore Size Distribution Variation of MW-Treated Wood
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, F.; Lv, J. A study on fluid permeability of important Chinese woods. Sci. Silvae Sin. 1992, 28, 237–246. (In Chinese) [Google Scholar]
- Guo, J.; Guo, X.; Xiao, F.; Xiong, C.; Yin, Y. Influences of provenance and rotation age on heartwood ratio, stem diameter and radial variation in tracheid dimension of cunninghamia lanceolata. Eur. J. Wood Wood Prod. 2018, 76, 669–677. [Google Scholar] [CrossRef]
- Torgovnikov, G.; Vinden, P. High-Intensity microwave wood modification for increasing permeability. For. Prod. J. 2009, 59, 84–92. [Google Scholar]
- Torgovnikov, G.; Vinden, P. Microwave wood modification technology and its applications. For. Prod. J. 2010, 60, 173–182. [Google Scholar] [CrossRef]
- Vinden, P.; Torgovnikov, G.; Hann, J. Microwave Modification of radiata pine railway sleepers for preservative treatment. Eur. J. Wood Wood Prod. 2011, 69, 271–279. [Google Scholar] [CrossRef]
- Harris, G.A.; Torgovnikov, G.; Vinden, P.; Brodie, G.I.; Shaginov, A. Microwave pretreatment of backsawn messmate boards to improve drying quality: Part 1. Dry. Technol. 2008, 26, 579–584. [Google Scholar] [CrossRef]
- Dömény, J.; Koiš, V.; Dejmal, A. Microwave radiation effect on axial fluid permeability in false heartwood of beech (Fagus Sylvatica L.). BioResources 2014, 9, 372–380. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xiong, X.; Xie, J.; Li, Y.; Wei, Y.; Quan, P.; Mou, Q.; Li, X. Effect of microwave pretreatment on permeability and drying properties of wood. BioResources 2017, 12, 3850–3863. [Google Scholar] [CrossRef] [Green Version]
- Balboni, B.M.; Ozarska, B.; Garcia, J.N.; Torgovnikov, G. Microwave treatment of eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood properties. Eur. J. Wood Wood Prod. 2018, 76, 861–870. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, K.; Cai, L.; Shi, S.Q. Acceleration of moisture migration in larch wood through microwave pre-treatments. Dry. Technol. 2013, 31, 666–671. [Google Scholar] [CrossRef]
- Dashti, H.; Shahverdi, M.; Taghiyari, H.R.; Salehpur, S.; Heshmati, S. Effects of steaming and microwave pretreatments on mass transfer characteristics of aleppe oak (quercus infectoria). BioResources 2012, 7, 3262–3273. [Google Scholar]
- Liu, H.; Wang, Q.; Yang, L.; Jiang, T.; Cai, Y. Modification of larch wood by intensive microwave irradiation. J. For. Res. 2005, 16, 237–240. [Google Scholar]
- Li, X.; Zhang, B.; Li, W.; Li, Y. Research on the effect of microwave pretreatment on moisture diffusion coefficient of wood. Wood Sci. Technol. 2005, 39, 521–528. [Google Scholar] [CrossRef]
- Plötze, M.; Niemz, P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. Eur. J. Wood Wood Prod. 2011, 69, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.D.; Koubaa, A.; Chaala, A.; Belem, T.; Krause, C. Relationship between wood porosity, wood density and methyl methacrylate impregnation rate. Wood Mater. Sci. Eng. 2008, 3, 62–70. [Google Scholar] [CrossRef]
- Martin-Sampedro, R.; Martin, J.A.; Eugenio, M.E.; Revilla, E.; Villar, J.C. Steam explosion treatment of Eucalyptus globulus wood: Influence of operational conditions on chemical and structural modifications. BioResources 2011, 6, 4922–4935. [Google Scholar]
- Schneider, A. Investigations on the suitability of mercury porosimetry for the evaluation of wood impregnability. Eur. J. Wood Wood Prod. 1983, 41, 101–107. [Google Scholar] [CrossRef]
- He, S.; Lin, L.; Fu, F.; Zhou, Y.; Fan, M. Microwave treatment for enhancing the liquid permeability of Chinese fir. BioResources 2014, 9, 1924–1938. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Peng, L.; Zhu, G.; Fu, F.; Zhou, Y.; Song, B. Improving the sound absorption capacity of wood by microwave treatment. BioResources 2014, 9, 7504–7518. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Zhao, G. Structure of bordered pit membrane of Cunninghamia lanceolata tracheid. Sci. Silvae Sin. 2007, 43, 151–153. [Google Scholar]
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzamal, M.; Jedvert, K.; Theliander, H.; Rasmuson, A. Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 2015, 69, 61–66. [Google Scholar] [CrossRef]
- Erickson, H.D. Permeability of southern pine wood-a review. Wood Sci. 1970, 2, 149–158. [Google Scholar]
- Petty, J.A. Permeability and structure of the wood of sitka spruce. Proc. R. Soc. Lond. B 1970, 175, 149–166. [Google Scholar]
- Lu, J.; Lin, Z.; Jiang, J.; Zhao, Y.; Jiang, J.; Gao, R.; Yin, Y. Effect of diferent drying methods on the liquid impregnation of Chinese fir plantation wood. Sci. Silvae Sin. 2006, 42, 86–90. (In Chinese) [Google Scholar]
- Zhang, Y.; Cai, L. Effects of steam explosion on wood appearance and structure of sub-alpine fir. Wood Sci. Technol. 2006, 40, 427–436. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Cai, J. Opening cell pathways of larch wood by steam explosion. J. Fujian Agric. For. Univ. 2013, 42, 543–547. (In Chinese) [Google Scholar]
- Muzamal, M. Structural Modifications in Spruce Wood during Steam Explosion Pretreatment. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016. [Google Scholar]
- Donaldson, L.; Xu, P. Microfibril orientation across the secondary cell wall of radiata pine tracheids. Trees 2005, 19, 644–653. [Google Scholar] [CrossRef]
- Deng, Q.; Li, S.; Chen, Y. Mechanical properties and failure mechanism of wood cell wall layers. Comput. Mater. Sci. 2012, 62, 221–226. [Google Scholar] [CrossRef]
- Muzamal, M.; Gamstedt, E.K.; Rasmuson, A. Modeling wood fiber deformation caused by vapor expansion during steam explosion of wood. Wood Sci. Technol. 2014, 48, 353–372. [Google Scholar] [CrossRef]
- Qing, H.; Mishnaevsky, L. 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech. Mater. 2009, 41, 1034–1049. [Google Scholar] [CrossRef]
- Yamamoto, H. Role of the gelatinous layer on the origin of the physical properties of the tension wood. J. Wood Sci. 2004, 50, 197–208. [Google Scholar] [CrossRef]
- Schneider, A. Analysing the porosity of wood with the mercury porosimeter. Eur. J. Wood Wood Prod. 1979, 37, 295–302. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, X.; Zhou, Y.; Fu, Z.; Gao, X.; Zhou, F.; Fu, F. Effects of Microwave Treatment on Microstructure of Chinese Fir. Forests 2020, 11, 772. https://doi.org/10.3390/f11070772
Weng X, Zhou Y, Fu Z, Gao X, Zhou F, Fu F. Effects of Microwave Treatment on Microstructure of Chinese Fir. Forests. 2020; 11(7):772. https://doi.org/10.3390/f11070772
Chicago/Turabian StyleWeng, Xiang, Yongdong Zhou, Zongying Fu, Xin Gao, Fan Zhou, and Feng Fu. 2020. "Effects of Microwave Treatment on Microstructure of Chinese Fir" Forests 11, no. 7: 772. https://doi.org/10.3390/f11070772
APA StyleWeng, X., Zhou, Y., Fu, Z., Gao, X., Zhou, F., & Fu, F. (2020). Effects of Microwave Treatment on Microstructure of Chinese Fir. Forests, 11(7), 772. https://doi.org/10.3390/f11070772