Shifts in Riparian Plant Life Forms Following Flow Regulation
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data Collection
2.2. Data Analysis
3. Results
3.1. Hydrological Variables
3.2. Riparian Plant Species and Life Forms
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garssen, A.G.; Baattrup-Pedersen, A.; Voesenek, L.A.; Verhoeven, J.T.; Soons, M.B. Riparian plant community responses to increased flooding: A meta-analysis. Glob. Chang. Biol. 2015, 21, 2881–2890. [Google Scholar] [CrossRef] [PubMed]
- Sarneel, J.M.; Bejarano, M.D.; van Oosterhout, M.; Nilsson, C. Local flooding history affects plant recruitment in riparian zones. J. Veg. Sci. 2019, 30, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D.M.; Scott, M.L.; Poff, N.L.; Auble, G.T.; Lytle, D.A. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshw. Biol. 2010, 55, 206–225. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Maroto, J.; Nilsson, C.; Aguiar, F.C. Traits of riparian woody plants responding to hydrological and hydraulic conditions: A northern Swedish database. Ecology 2016, 97, 2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warming, E. Oecology of Plants; Clarendon Press: Oxford, UK, 1909. [Google Scholar]
- Raunkiær, C. Types biologiques pour la géographie botanique. Overs. Det K. Dan. Vidensk. Selsk. Forh. 1905, 347–438. [Google Scholar]
- Du Rietz, G.E. Life-forms of terrestrial flowering plants. I. Acta Phytogeogr. Suec. 1931, 3, 95. [Google Scholar]
- Clements, F. Plant Indicators, the Relations of Plant Communities to Process and Practice; Carnegie Institution of Washington Publisher: Washington, DC, USA, 1920; p. 388. [Google Scholar]
- Arnold, J.F. Plant life-form classification and its use in evaluating range conditions and trend. Rangel. Ecol. Manag./J. Range Manag. Arch. 1955, 8, 176–181. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Vetaas, O.R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 2003, 12, 327–340. [Google Scholar] [CrossRef]
- Marini, L.; Battisti, A.; Bona, E.; Federici, G.; Martini, F.; Pautasso, M.; Hulme, P.E. Alien and native plant life-forms respond differently to human and climate pressures. Glob. Ecol. Biogeogr. 2012, 21, 534–544. [Google Scholar] [CrossRef]
- Casillo, J.; Kunst, C.; Semmartin, M. Effects of fire and water availability on the emergence and recruitment of grasses, forbs and woody species in a semiarid Chaco savanna. Austral Ecol. 2012, 37, 452–459. [Google Scholar] [CrossRef]
- Dodd, M.B.; Lauenroth, W.K.; Welker, J.M. Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community. Oecologia 1998, 117, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, E.C.; Ralston, B.E.; Sarr, D.; Merritt, D.M.; Shafroth, P.B.; Scott, J.A. Functional traits and ecological affinities of riparian plants along the Colorado River in Grand Canyon. West. N. Am. Nat. 2017, 77, 22–30. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Segurado, P.; Martins, M.J.; Bejarano, M.D.; Nilsson, C.; Portela, M.M.; Merritt, D.M. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 2018, 55, 2227–2240. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Nilsson, C.; Aguiar, F.C. Riparian plant guilds become simpler and most likely fewer following flow regulation. J. Appl. Ecol. 2018, 55, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Dĺaz, S.; Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Nilsson, C.; Aguiar, F.C. Data from: Riparian plant guilds become simpler and most likely fewer following flow regulation. Dryad 2017. [Google Scholar] [CrossRef]
- Wickham, H.; Francois, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, 0.4-3 ed.; R Package; CRAN: Wien, Austria, 2015; Available online: https://CRAN.R-project.org/package=dplyr (accessed on January 2020).
- Bates, D.M.; Maechler, M.; Bolker, B.M.; Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4, 1.1-7 ed.; R Package; CRAN: Wien, Austria, 2014; Available online: https://cran.r-project.org/web/packages/lme4/ (accessed on January 2020).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. vegan: Community Ecology Package, 1.17-4 ed.; R Package; CRAN: Wien, Austria, 2010; Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on January 2020).
- Dattalo, P.V. A Demonstration of Canonical Correlation Analysis with Orthogonal Rotation to Facilitate Interpretation. School of Social Work; Virginia Commonwealth University: Richmond, Virginia, Unpublished work; 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing Computer Program, 3.6-1 ed.; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef] [Green Version]
- Ström, L.; Jansson, R.; Nilsson, C. Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshw. Biol. 2012, 57, 49–60. [Google Scholar] [CrossRef]
- Arnqvist, G.; Dynesius, M. Ranealven. Naturin- Ventering och bed6mning av Vetenskapliga Naturvarden; Lansstyrelsen i Norrbottens Lan: Lulea, Sweden, 1987. (In Swedish) [Google Scholar]
- Bejarano, M.D.; Sordo-Ward, Á.; Alonso, C.; Nilsson, C. Characterizing effects of hydropower plants on sub-daily flow regimes. J. Hydrol. 2017, 550, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Jansson, R. Floristic differences between riparian corridors of regulated and free-flowing boreal rivers. Regul. Rivers Res. Manag. 1995, 11, 55–66. [Google Scholar] [CrossRef]
- Jansson, R.; Nilsson, C.; Dynesius, M.; Andersson, E. Effects of river regulation on river-margin vegetation: A comparison of eight boreal rivers. Ecol. Appl. 2000, 10, 203–224. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Nilsson, C.; Del Tanago, M.G.; Marchamalo, M. Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern Sweden. Freshw. Biol. 2011, 56, 853–866. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Liu, H.; Zhang, Y.; Cheng, Z.; Li, B. Effect of long-term winter flooding on the vascular flora in the drawdown area of the Three Georges Reservoir, China. Pol. J. Ecol. 2012, 60, 95–106. [Google Scholar]
- Grime, J.P. Plant Strategies and Vegetation Processes; John Wiley & Sons: Chichester, UK, 1979. [Google Scholar]
- Polzin, M.; Rood, S.B. Effects of damming and flow stabilization on riparian processes and black cottonwoods along the Kootenay River. Rivers 2000, 7, 221–232. [Google Scholar]
- Dixon, M.D.; Turner, M.G. Simulated recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Res. Appl. 2006, 22, 1057–1083. [Google Scholar] [CrossRef]
- Aguilera, M.O.; Laurenroth, W.K. Neighborhood interactions in a natural population of the perennial bunchgrass Bouteloa gracilis. Oecologia 1993, 94, 595–602. [Google Scholar] [CrossRef]
- Walker, L.R.; Zasada, J.C.; Chapin, F.S. The role of life-history processes in primary succession on an Alaskan floodplain. Ecology 1986, 67, 1243–1253. [Google Scholar] [CrossRef]
- Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M., Jr. Channel narrowing and vegetation development following a Great Plains flood. Ecology 1996, 77, 2467–2481. [Google Scholar] [CrossRef]
- Cosgriff, R.J.; Nelson, J.C.; Yin, Y. Floodplain forest response to large-scale flood disturbance. Trans. Ill. State Acad. Sci. 2007, 100, 47–70. [Google Scholar]
- Stromberg, J.C.; Lite, S.J.; Dixon, M.D. Effects of stream flow patterns on riparian vegetation of a semiarid river: Implications for a changing climate. River Res. Appl. 2010, 26, 712–729. [Google Scholar] [CrossRef]
- Viers, J.H.; Fremier, A.K.; Hutchinson, R.A.; Quinn, J.F.; Thorne, J.H.; Vaghti, M.G. Multiscale patterns of riparian plant diversity and implications for restoration. Restor. Ecol. 2012, 20, 160–169. [Google Scholar] [CrossRef]
- Stromberg, J.C.; Boudell, J.A. Floods, drought, and seed mass of riparian plant species. J. Arid Environ. 2013, 97, 99–107. [Google Scholar] [CrossRef]
- Walker, M.D.; Ingersoll, R.C.; Webber, P.J. Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology 1995, 76, 1067–1083. [Google Scholar] [CrossRef]
- Angiolini, C.; Nucci, A.; Frignani, F.; Landi, M. Using multivariate analyses to assess effects of fluvial type on plant species distribution in a Mediterranean river. Wetlands 2011, 31, 167–177. [Google Scholar] [CrossRef]
- Angiolini, C.; Nucci, A.; Landi, M.; Bacchetta, G. What drives riparian plant taxa and assemblages in Mediterranean rivers? Aquat. Sci. 2017, 79, 371–384. [Google Scholar] [CrossRef]
- Greet, J.; Cousens, R.D.; Webb, J.A. Seasonal timing of inundation affects riparian plant growth and flowering: Implications for riparian vegetation composition. Plant Ecol. 2013, 214, 87–101. [Google Scholar] [CrossRef]
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Stella, J.C.; Battles, J.J.; McBride, J.R.; Orr, B.K. Riparian seedling mortality from simulated water table recession, and the design of sustainable flow regimes on regulated rivers. Restor. Ecol. 2010, 18, 284–294. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sordo-Ward, Á; Alonso, C.; Jansson, R.; Nilsson, C. Hydropeaking affects germination and establishment of riverbank vegetation. Ecol. Appl. 2020. [Google Scholar] [CrossRef]
- Wilson, T.B.; Witkowski, E.T.F. Water requirements for germination and early seedling establishment in four African savanna woody plant species. J. Arid Environ. 1998, 38, 541–550. [Google Scholar] [CrossRef]
- Schwinning, S.; Sala, O.E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 2004, 141, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Weiher, E.; Keddy, P. Ecological Assembly Rules: Perspectives, Advances, Retreats; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Mouillot, D.; Graham, N.A.J.; Villeger, S.; Mason, N.W.H.; Bellwood, D.R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Décamps, H.; Planty-Tabacchi, A.M.; Tabacchi, E. Changes in the hydrological regime and invasions by plant species along riparian systems of the Adour River, France. Regul. Rivers Res. Manag. 1995, 11, 23–33. [Google Scholar] [CrossRef]
- Zelnik, I.; Haler, M.; Gaberščik, A. Vulnerability of a riparian zone towards invasion by alien plants depends on its structure. Biologia 2015, 70, 869–878. [Google Scholar] [CrossRef]
- Nilsson, C.; Brown, R.L.; Jansson, R.; Merritt, D.M. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 2010, 85, 837–858. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Jansson, R.; Kuglerová, L.; Lind, L.; Ström, L. Boreal riparian vegetation under climate change. Ecosystems 2013, 16, 401–410. [Google Scholar] [CrossRef]
- Chapin, F.S.; Walker, B.H.; Hobbs, R.J.; Hooper, D.U.; Lawton, J.H.; Sala, O.E.; Tilman, D. Biotic control over the functioning of ecosystems. Science 1997, 277, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Lyons, J.; Thimble, S.W.; Paine, L.K. Grass versus trees: Managing riparian areas to benefit streams of central North America. J. Am. Water Res. Assoc. 2000, 36, 919–930. [Google Scholar] [CrossRef]
- Watson, C.C.; Abt, S.R.; Derrick, D. Willow posts bank stabilization. J. Am. Water Res. Assoc. 1997, 33, 293–300. [Google Scholar] [CrossRef]
- Parsons, J.E.; Gilliam, J.W.; Munoz-Carpena, R.; Daniels, R.B.; Dillaha, T.A. Nutrient and sediment removal by grass and riparian buffers. Trans. Am. Soc. Agric. Eng. 1994, 37, 147–154. [Google Scholar]
- Peterson, A.M. Effects of electric transmission rights-of-way on trout in forested headwater streams in New York. N. Am. J. Fish. Manag. 1993, 13, 581–585. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L. The role of plant interactions in the restoration of degraded ecosystems: A meta-analysis across life-forms and ecosystems. J. Ecol. 2009, 97, 1202–1214. [Google Scholar] [CrossRef] [Green Version]
Hydrological Variable | Free-flowing (n = 63) | Low (n = 14) | Medium (n = 8) | High (n = 9) | Trend | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std. Deviation | Mean | Std. Deviation | Mean | Std. Deviation | Mean | Std. Deviation | ||
Reg | 0.00 a | 0.00 | 6.71 b | 2.20 | 39.99 c | 7.34 | 84.48 d | 18.07 | |
MMaxMst | 3.07 a | 0.46 | 2.48 b | 0.32 | 1.39 c | 0.35 | 1.37 c | 0.18 | |
MMinMst | 0.21 a | 0.08 | 0.30 b | 0.07 | 0.68 c | 0.21 | 0.51c | 0.23 | |
MT2st | 5.47 a | 1.52 | 3.33b | 0.58 | 2.62 c | 0.57 | 1.95 d | 0.26 | |
TMaxM | 1.52 a | 0.62 | 2.00 b | 0.00 | 3.29 b | 3.24 | 8.39 c | 2.47 | |
TMinM | 10.86 a | 0.66 | 11.86 b | 0.53 | 8.25 a | 5.20 | 4.56 c | 4.61 | |
TXLow | 293.69 a | 112.21 | 298.93 a | 103.72 | 106.89 b | 94.62 | 89.13 b | 83.61 | |
TT2 | 32.37 a | 15.26 | 61.67 b | 17.47 | 100.12 c | 27.30 | 152.77 d | 78.36 | |
DMaxM | 1.32 a | 0.52 | 1.71 b | 0.47 | 5.31 c | 4.25 | 6.83 c | 3.14 | |
DMinM | 1.86 a | 0.50 | 1.86 a | 0.36 | 3.38 a | 2.92 | 2.78 a | 2.82 | |
DXLow | 37.65 a | 13.43 | 13.30 b,c | 16.38 | 3.21 c | 2.49 | 6.65 c | 5.99 | |
DT2 | 64.32 a | 17.95 | 97.55 b | 30.55 | 46.60 c | 11.52 | 38.42 c | 23.17 | |
FMRev | 4.24 a | 0.98 | 3.21 b | 0.58 | 5.29 c | 1.16 | 4.33 a,c | 2.06 | |
FDRev | 43.69 a | 17.13 | 40.86 a | 37.14 | 138.61 b | 44.08 | 106.49 b | 42.09 | |
FXLow | 1.10 a | 0.54 | 1.02 b | 2.40 | 6.94 c | 5.71 | 3.87 a,b,c | 6.21 | |
Rrisest | 0.13 a | 0.08 | 0.07 b | 0.06 | 0.15 a | 0.07 | 0.10 a,b | 0.09 | |
Rfallst | 0.05 a | 0.03 | 0.04 b | 0.06 | 0.14 c | 0.06 | 0.10 a,c | 0.09 | |
Woody Species (F = 2.08, p = 0.001) | Graminoids (F = 1.76, p = 0.001) | Forbs (F = 1.99, p = 0.001) | |||||||
---|---|---|---|---|---|---|---|---|---|
CCA1 | CCA2 | CCA3 | CCA1 | CCA2 | CCA3 | CCA1 | CCA2 | CCA3 | |
Reg | 0.29 | 0.56 | 0.17 | −0.46 | 0.09 | 0.00 | 0.14 | −0.08 | −0.47 |
MMaxM_std | −0.07 | −0.46 | −0.11 | 0.22 | −0.07 | 0.06 | 0.11 | 0.19 | 0.27 |
MMinM_std | −0.17 | 0.55 | −0.03 | −0.11 | 0.18 | 0.13 | −0.17 | 0.04 | −0.40 |
MT2_std | −0.08 | −0.28 | −0.10 | 0.28 | 0.04 | 0.14 | −0.03 | 0.25 | 0.07 |
TMaxM | 0.29 | 0.13 | 0.30 | −0.37 | 0.01 | −0.22 | 0.21 | −0.06 | −0.24 |
TMinM | −0.01 | −0.22 | 0.03 | 0.04 | −0.39 | −0.05 | 0.22 | −0.21 | 0.53 |
TXLow | −0.01 | −0.46 | 0.29 | 0.04 | −0.18 | −0.20 | 0.10 | −0.22 | 0.32 |
TT2 | 0.30 | 0.39 | 0.50 | −0.72 | 0.26 | −0.11 | 0.30 | −0.22 | −0.56 |
DMaxM | 0.00 | 0.35 | 0.33 | −0.14 | −0.01 | −0.25 | −0.09 | −0.07 | −0.07 |
DMinM | −0.41 | 0.35 | 0.34 | −0.04 | 0.11 | −0.32 | −0.29 | −0.24 | −0.04 |
DXLow | −0.46 | −0.14 | 0.04 | 0.40 | 0.14 | −0.67 | −0.54 | −0.29 | 0.41 |
DT2 | 0.10 | −0.28 | 0.21 | −0.27 | −0.32 | −0.32 | 0.20 | −0.38 | 0.36 |
FMRev | −0.15 | 0.17 | −0.59 | 0.31 | 0.13 | 0.47 | −0.12 | 0.64 | −0.05 |
FDRev | 0.03 | 0.63 | 0.01 | −0.21 | 0.30 | 0.27 | −0.01 | 0.17 | −0.64 |
FXLow | 0.43 | 0.66 | −0.15 | −0.45 | 0.18 | 0.34 | 0.18 | −0.09 | −0.53 |
RRise_std | 0.17 | 0.15 | −0.13 | 0.02 | 0.17 | 0.33 | 0.08 | 0.26 | −0.34 |
RFall_std | 0.34 | 0.60 | −0.04 | −0.41 | 0.14 | 0.26 | 0.24 | −0.07 | −0.53 |
Eigenvalue | 0.10 | 0.07 | 0.05 | 0.14 | 0.12 | 0.08 | 0.18 | 0.13 | 0.09 |
Proportion Explained | 0.23 | 0.17 | 0.12 | 0.20 | 0.17 | 0.12 | 0.18 | 0.13 | 0.09 |
Significance of axis | p = 0.001 | p = 0.001 | p = 0.027 | p = 0.049 | p = 0.072 | p = 0.113 | p = 0.001 | p = 0.001 | p = 0.003 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejarano, M.D.; Sarneel, J.; Su, X.; Sordo-Ward, A. Shifts in Riparian Plant Life Forms Following Flow Regulation. Forests 2020, 11, 518. https://doi.org/10.3390/f11050518
Bejarano MD, Sarneel J, Su X, Sordo-Ward A. Shifts in Riparian Plant Life Forms Following Flow Regulation. Forests. 2020; 11(5):518. https://doi.org/10.3390/f11050518
Chicago/Turabian StyleBejarano, María D., Judith Sarneel, Xiaolei Su, and Alvaro Sordo-Ward. 2020. "Shifts in Riparian Plant Life Forms Following Flow Regulation" Forests 11, no. 5: 518. https://doi.org/10.3390/f11050518
APA StyleBejarano, M. D., Sarneel, J., Su, X., & Sordo-Ward, A. (2020). Shifts in Riparian Plant Life Forms Following Flow Regulation. Forests, 11(5), 518. https://doi.org/10.3390/f11050518