Next Article in Journal
Application of Paclobutrazol to Mitigate Environmental Stress of Urban Street Trees
Previous Article in Journal
Micro-Hotspots for Conservation: An Umbrella Tree Species for the Unique Socotran Reptile Fauna
Previous Article in Special Issue
Comparative Transcriptome Analyses of Gene Response to Different Light Conditions of Camellia oleifera Leaf Using Illumina and Single-Molecule Real-Time-Based RNA-Sequencing
Open AccessArticle

Light Shock Stress after Outdoor Sunlight Exposure in Seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. Pre-Cultivated under LEDs—Possible Mitigation Treatments and Their Energy Consumption

1
Department of Energy and Built Environments, Dalarna University, 791 88 Falun, Sweden
2
Department of Engineering Sciences, Uppsala University, 751 21 Uppsala, Sweden
*
Author to whom correspondence should be addressed.
Forests 2020, 11(3), 354; https://doi.org/10.3390/f11030354
Received: 21 February 2020 / Revised: 14 March 2020 / Accepted: 18 March 2020 / Published: 21 March 2020
Year-round cultivation under light emitting diodes (LEDs) has gained interest in boreal forest regions like Fenno-Scandinavia. This concept offers forest nurseries an option to increase seedling production normally restricted by the short vegetation period and the climate conditions. In contrast to some horticultural crops which can be cultivated entirely under LEDs without sunlight, forest seedlings need to be transplanted outdoors in the nursery at a very young age before being outplanted in the field. Juvenile plants are less efficient using absorbed light and dissipating excess energy making them prone to photoinhibition at conditions that usually do not harm mature plants. The outdoor transfer can cause stress in the seedlings due to high sunlight intensity and exposure to ultraviolet (UV) radiation not typically present in the spectra of LED lamps. This study tested possible treatments for mitigating light shock stress in seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. transplanted from indoor cultivation under LEDs to outdoor sunlight exposure. Three sowings were carried out in 2014 (May and June) and 2015 (May) cultivating the seedlings during five weeks under LED lights only. Afterwards, higher light intensity or UV radiation treatments were applied during one week in order to adapt the seedlings to natural outdoor conditions. After transplanting a transition phase was introduced using shading cloths for one or three weeks as outdoor treatments for light shock mitigation. Chlorophyll fluorescence (ChlF) levels and CO2 assimilation rates were measured before transplanting and followed outdoors during 5 weeks. The ChlF results revealed stress symptoms in the photoreceptors during the first days after transplanting. After five weeks outdoors the ChlF levels had recovered and the light saturation points had shifted, allowing higher CO2 assimilation rates. By the end of the vegetation period the morphological attributes showed no major differences between treatments. View Full-Text
Keywords: forest tree seedlings; year-round production; photoinhibition; light-shock; light emitting diodes; light quality and intensity forest tree seedlings; year-round production; photoinhibition; light-shock; light emitting diodes; light quality and intensity
Show Figures

Graphical abstract

MDPI and ACS Style

Hernandez Velasco, M.; Mattsson, A. Light Shock Stress after Outdoor Sunlight Exposure in Seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. Pre-Cultivated under LEDs—Possible Mitigation Treatments and Their Energy Consumption. Forests 2020, 11, 354.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop