Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plant Material, Soil Material
2.2. Culture Medium of the SK1-7 Strain
2.3. Determination of the Amount of Dissolved Potassium and Potassium-Dissolving Rate
2.4. Determination of Aluminium and Silicon Ion Contents in Fermentation Broth
2.5. Determination of Potassium Feldspar Dissolution by Surface Morphology Analysis
2.6. Effect of the SK1-7 Strain on Plant Growth
2.7. Determination of Soil pH and Available Potassium
2.8. Statistical Analyses
3. Results
3.1. Solubilization of Potash Feldspar by the SK1-7 Strain
3.2. Dissolution of the SK1-7 Strain on the Surface of Potash Feldspar
3.3. Effects of Applying the SK1-7 Strain to Soil on Poplar Growth, Soil pH, and Available Potassium
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, R.A.; Jones, R.G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant-cell. New Phytol. 1984. [Google Scholar] [CrossRef]
- Marschner, H. Long-Distance Transport in the Xylem and Phloem and Its Regulation. In Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; pp. 79–115. [Google Scholar]
- Schachtman, D.P.; Shin, R. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 2007, 58, 47–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.N.; Cao, S.Y.; Chang, L.J.; Huang, J.D.; Zhao, X. Summarization of research status of potash feldspar in China. J. Bohai Univ. Nat. Sci. Ed. 2019, 40, 315–320. [Google Scholar]
- Huang, G.Q.; Wu, L.; Li, Y.X.; Zhang, W.; Zhnag, F.S. Development situation and suggestions on nitrogen fertilizer industry in China. Xiandai Huagong Mod. Chem. Ind. 2013, 33, 5–9. [Google Scholar]
- Zhang, S.N.; Huang, H.G.; Yuan, L.M.; Yan, D.R.; Feng, F.Y. Application progress of microbial fertilizer in forestry. J. Inn. Mong. For. Ence Technol. 2017, 43, 52–55. [Google Scholar]
- Bahadur, I.; Maurya, R.; Roy, P.; Kumar, A. Potassium-Solubilizing Bacteria (KSB): A Microbial Tool for K-Solubility, Cycling, and Availability to Plants. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability; Springer: Singapore, 2019; pp. 257–265. [Google Scholar]
- Jiang, J.H.; Peng, X.W.; Yan, Z.X.; He, B.W.; Zhu, C.X.; Guo, H.; Genhg, B. Isolation and identification of potassium-solubilizing bacteria from rhizosphere soil of apple tree. Chin. J. Agrometeorol. 2017, 38, 738–748. [Google Scholar]
- Ahmad, M.; Nadeem, S.M.; Naveed, M.; Zahir, Z.A. Potassium-Solubilizing Bacteria and Their Application in Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; Volume 6, pp. 293–313. [Google Scholar]
- Zhang, C.; Kong, F. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl. Soil Ecol. 2014, 82, 18–25. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Pirdashti, H.; Lendeh, K.S. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol. Eng. 2017, 103, 164–169. [Google Scholar] [CrossRef]
- Zhang, D.X. Cutting seedling technology of Xinjiang poplar. Mod. Agric. Sci. Technol. 2015, 19, 176–177. [Google Scholar]
- Lei, Y.U. Effects of Nitrogen, Phosphorus and potassium fertilizer on the internal cold-resistance index of poplars. Inn. Mong. For. Investig. Des. 2016, 39, 125–127. [Google Scholar]
- Liu, J.J.; Fang, S.-Z. Effects of biological mulching on dynamics of potassium content in rhizospheric soil of poplar plantation in southern upland area. Guizhou For. Sci. Technol. 2015, 43, 1–5. [Google Scholar]
- Beibei, X. Screening and identification of highefficiency potassium-solubilizing bacteria and their growth-promoting effects on plants. J. Henan Agric. Sci. 2020, 2, 81–88. [Google Scholar]
- Wang, K.-L.; Han, X.-Z.; Zhang, X.-L.; Zhang, Y.-C. Study on screening of silicate bacteria and potassium extraction. Ind. Miner. Process. 2005, 34, 25–27. [Google Scholar]
- Zhong, X.-H.; Huang, N.-R. Rice grain chalkiness is negatively correlated with root activity during grain filling. Rice Sci. 2005, 34, 25–27. [Google Scholar]
- Malik, M.A.; Khan, K.S.; Marschner, P.; Ali, S. Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. J. Soil Sci. Plant Nutr. 2013, 13, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.H.; Fan, H.M.; Zhang, Z.X.; Liu, X.X.; Hong, M.A.; Wei, C.Y. Evaluation of uncertainty of determination of exchangeable potassium in soil by flame photometry. Hlongjiang Agric. Sci. 2016, 10, 43–45. [Google Scholar]
- Liu, W.X.; Yang, Q.Y.; Xu, X.S.; Wu, X.H. Research progress of silicate bacteria fertilizer. Tianjin Agric. Sci. 2003, 9, 39–42. [Google Scholar]
- Saha, M.; Maurya, B.R.; Meena, V.S.; Bahadur, I.; Kumar, A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal. Agric. Biotechnol. 2016, 7, 202–209. [Google Scholar] [CrossRef]
- Elizabeth, P.; Miguel, S.; Maria, M.B.; Yarzábal, L.A. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust the south-eastern venezuelan region. Soil Biol. Biochem. 2007, 39, 2905–2914. [Google Scholar]
- Wu, J.; Guo, C.B.; Jia, Z.; Hao, H.H.; Xu, X.J.; Yang, L.J.; Sun, H.Z. Potassium dissolving activity and growth characteristics of silicate bacteria ZMD02. J. Anhui Agric. Sci. 2020, 48, 170–171, 175. [Google Scholar]
- Buragohain, S.; Nath, D.J.; Devi, Y.B.; Bhattacharyya, B.; Dutta, S. Molecular characterization of potassium solubilizing bacteria from crop rhizosphere of the north eastern region of India. Curr. Ence 2018, 114, 2543–2548. [Google Scholar] [CrossRef]
- Dong, C.L.; Wang, B.L. Biotite weathering by Aspergillus niger and its potential utilisation. J. Soil Sediments 2016, 16, 1901–1910. [Google Scholar]
- Sheng, X.F.; Huang, W.Y. Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol. Sin. 2002, 39, 863–871. [Google Scholar]
- Huang, Z.; Ma, G.; He, L. Effects of ammonium sulfate on the metabolism and K-feldspar weathering of two potassium-bearing mineral-solubilizing bacteria. Acta Microbiol. Sin. 2012, 52, 206–213. [Google Scholar]
- Balasubramanian, B.; Ponnusamy, P.; Angusamy, B. Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatal. Agric. Biotechnol. 2017, 12, 116–124. [Google Scholar]
- Wei, J. Study on Isolation and Identification of High Efficient Potassium Bacteria from Poplar Rhizospheric Soil; Nanjing Forestry University: Nanjing, China, 2016. [Google Scholar]
- Wan, B.; Ye, L.; Yue, W.U.; Liu, S.; Wang, G.; Zhang, D.; Jiang, Y. Screening, Identification of phosphate-and potassium-solubilizing PGPR and its promoting effect on tobacco. J. Henan Agric. Sci. 2016, 45, 46–51. [Google Scholar]
- Zhu, S.L.; Liu, S.L.; Li, J.; Yang, Y.; Yang, W.Y.; Li, J.G. Effect of plant rhizosphere-promoting bacterial fertilizer on potassium decomposition of rhizosphere soil of Xinjiang Jujube and its correlation with organic acids. Jiangsu Agric. Sci. 2018, 19, 125–128. [Google Scholar]
Treatment | Rate of Plant Height Increase (%) | Rate of Plant Diameter Increase (%) | Plant Fresh Weight (g) | Plant Dry Weight (g) | Relative Chlorophyll Content | Plant Total Potassium (%) | Root Activity (μg/mL·g·h) |
---|---|---|---|---|---|---|---|
CK 1 | 1.91 ± 0.82 b | 4.88 ± 2.13 b | 68.6 ± 10.8 b | 43.5 ± 9.35 b | 32.7 ± 2.41 b | 0.43 ± 0.02 b | 68.7 ± 2.01 b |
SK17 2 | 21.1 ± 7.6 a | 9.7 ± 3.42 a | 94.9 ± 9.8 a | 53.4 ± 9.69 a | 45.7 ± 2.31 a | 0.6 ± 0.01 a | 90.6 ± 2.36 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ye, J.; Kong, Q. Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L. Forests 2020, 11, 1348. https://doi.org/10.3390/f11121348
Chen Y, Ye J, Kong Q. Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L. Forests. 2020; 11(12):1348. https://doi.org/10.3390/f11121348
Chicago/Turabian StyleChen, Yifan, Jianren Ye, and Qingqing Kong. 2020. "Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L." Forests 11, no. 12: 1348. https://doi.org/10.3390/f11121348
APA StyleChen, Y., Ye, J., & Kong, Q. (2020). Potassium-Solubilizing Activity of Bacillus aryabhattai SK1-7 and Its Growth-Promoting Effect on Populus alba L. Forests, 11(12), 1348. https://doi.org/10.3390/f11121348