Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Measurements of Soil Respiration, Soil Temperature, and Water Content
2.3. Measurements of Litter Cover and Root
2.4. Data Analysis
3. Results
3.1. Characteristics of Biotic and Abiotic Factors
3.2. Variation of Soil Respiration at Different Soil Depths of the Three Forest Types
3.3. Contribution of Litter and Roots to Soil Respiration
3.4. Relationships among Soil Respiration, Temperature, and Soil Water Content
4. Discussion
4.1. Factors Influencing Soil Respiration
4.2. Temperature Sensitivity of Soil Respiration
4.3. Soil Respiration among Forest Types
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate change. In The Physical Science Basis; Solomon, S., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Zhao, J.X.; Li, R.C.; Li, X.; Tian, L.H. Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena 2017, 159, 84–92. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emissions from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Wang, C.K.; Yang, J.Y.; Zhang, Q.Z. Soil respiration in six temperate forests in China. Glob. Chang. Biol. 2006, 12, 2103–2114. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.L.; Wang, T.; Sun, J.Y.; Shen, Z.H. Temperature sensitivity of soil respiration in different ecosystems in china. Soil Biol. Biochem. 2009, 41, 1008–1014. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Glob. Biogeochem. Cycles 2001, 15, 687–696. [Google Scholar] [CrossRef]
- Luan, J.W.; Liu, S.R.; Zhu, X.L.; Wang, J.X.; Liu, K. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biol. Biochem. 2012, 44, 143–150. [Google Scholar] [CrossRef]
- Saito, M.; Kato, T.; Tang, Y.H. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Glob. Chang. Biol. 2009, 15, 221–228. [Google Scholar] [CrossRef]
- Wan, S.Q.; Norby, R.J.; Ledford, J.; Weltzin, J. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Chang. Biol. 2007, 13, 2411–2424. [Google Scholar] [CrossRef]
- Chen, Q.S.; Wang, Q.B.; Han, X.G.; Wan, S.Q.; Li, L.H. Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef]
- Chen, B.Y.; Liu, S.R.; Ge, J.P.; Chu, J.X. Annual and seasonal variations of Q10 soil respiration in the sub-alpine forests of the Eastern Qinghai-Tibet Plateau, China. Soil Biol. Biochem. 2010, 42, 1735–1742. [Google Scholar] [CrossRef]
- Søe, A.R.B.; Buchmann, N. Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol. 2005, 25, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Q.Q.; Wang, Y.; Zheng, W.; Yao, L.G.; Hu, Y.X.; Guo, S.L. Contrasting responses of soil respiration and temperature sensitivity to land use types: Cropland vs. apple orchard on the Chinese Loess Plateau. Sci. Total Environ. 2018, 621, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Q.; Chen, Y.Q.; Zhao, J.; Fu, S.L.; Li, Z.; Xia, H.P.; Zhou, L.X. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Sci. Total Environ. 2017, 607–608, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Högberg, P.; Högberg, M.N.; Göttlicher, S.G.; Betson, N.R.; Keel, S.G.; Metcalfe, D.B.; Campbell, C.; Schindlbacher, A.; Hurry, V.; Lundmark, T.; et al. High Temporal Resolution Tracing of Photosynthate Carbon from the Tree Canopy to Forest Soil Microorganisms. New Phytol. 2008, 177, 220–228. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Zhang, Z.Q.; Zha, T.G.; Luo, Z.K.; Zheng, J.M. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol. Biochem. 2013, 57, 135–143. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, S.; Xiong, L.; Yang, W.Q.; Yin, H.J.; Tu, L.H.; Wu, F.Z.; Chen, L.H.; Tan, B. Temperature sensitivity of soil respiration in China’s forest ecosystems: Patterns and controls. Appl. Soil Ecol. 2015, 93, 105–110. [Google Scholar] [CrossRef]
- Piao, S.L.; Tan, K.; Nan, H.J.; Ciais, P.; Fang, J.Y.; Wang, T.; Vuichard, N.; Zhu, B. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Glob. Planet. Chang. 2012, 98, 73–80. [Google Scholar] [CrossRef]
- Wang, D.D.; Yu, X.X.; Jia, G.D.; Wang, H.N. Sensitivity analysis of runoff to climate variability and land-use changes in the Haihe Basin mountainous area of north China. Agric. Ecosyst. Environ. 2019, 269, 193–203. [Google Scholar] [CrossRef]
- Sheng, H.; Yang, Y.S.; Yang, Z.J.; Chen, G.S.; Xie, J.S.; Guo, J.F.; Zou, S.Q. The dynamic response of soil respiration to land-use changes in subtropical China. Glob. Chang. Biol. 2010, 16, 1107–1121. [Google Scholar] [CrossRef]
- Tang, J.W.; Baldocchi, D.D. Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 2005, 73, 183–207. [Google Scholar] [CrossRef]
- Li, Y.Q.; Xu, M.; Sun, O.J.; Cui, W.C. Effects of root and litter exclusion on soil CO2, efflux and microbial biomass in wet tropical forests. Soil Biol. Biochem. 2004, 36, 2111–2114. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wang, H.M.; Xu, M.J.; Ma, Z.Q.; Wang, Z.L. Soil organic carbon stocks and CO2, effluxes of native and exotic pine plantations in subtropical China. Catena 2015, 128, 167–173. [Google Scholar] [CrossRef]
- Ingwersen, J.; Butterbach-bahl, K.; Gasche, R.; Richter, O.; Papen, H. Barometric Process Separation: New Method for Quantifying Nitrification, Denitrification, and Nitrous Oxide Sources in Soils. Soil Sci. Soc. Am. J. 1999, 63, 117–128. [Google Scholar] [CrossRef]
- Chen, S.T.; Huang, Y. Determination of respiration, gross nitrification and denitrification in soil profile using BaPS system. J. Environ. Sci. 2006, 18, 937–943. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Wan, S.Q.; Hui, D.F.; Wallace, L.L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 2001, 413, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Wagle, P.; Kakani, V.G. Confounding Effects of Soil Moisture on the Relationship Between Ecosystem Respiration and Soil Temperature in Switchgrass. Bioenergy Res. 2014, 7, 789–798. [Google Scholar] [CrossRef]
- Pavelka, M.; Acosta, M.; Marek, M.V.; Kutsch, W.; Janous, D. Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 2007, 292, 171–179. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.G.; Feng, M.L.; Lin, S.; Malghani, S.; Ali, I.M. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 2010, 137, 294–307. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Guo, S.L.; Liu, Q.F.; Jiang, J.S.; Wang, R.; Li, N.N. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecol. Eng. 2015, 74, 196–205. [Google Scholar] [CrossRef]
- Jiang, J.; Guo, S.L.; Zhang, Y.J.; Liu, Q.F.; Wang, R.; Wang, Z.Q.; Li, N.N.; Li, R.J. Changes in temperature sensitivity of soil respiration in the phases of a three-year crop rotation system. Soil Tillage Res. 2015, 150, 139–146. [Google Scholar] [CrossRef]
- Kelting, D.L.; Burger, J.A.; Edwards, G.S. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol. Biochem. 1998, 30, 961–968. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; Deparri, I.; Jarvis, P.; Valentini, R. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Chang. Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Buchmann, N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol. Biochem. 2000, 32, 1625–1635. [Google Scholar] [CrossRef]
- Schaefer, D.A.; Feng, W.T.; Zou, X.M. Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biol. Biochem. 2009, 41, 1000–1007. [Google Scholar] [CrossRef]
- Luan, J.W.; Liu, S.R.; Zhu, X.L.; Wang, J.X. Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China. Plant Soil 2011, 347, 243–257. [Google Scholar] [CrossRef]
- Jenkins, M.E.; Adams, M.A. Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biol. Biochem. 2011, 43, 1266–1274. [Google Scholar] [CrossRef]
- Borken, W.; Xu, Y.J.; Davidson, E.A.; Beese, F. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Glob. Chang. Biol. 2002, 8, 1205–1216. [Google Scholar] [CrossRef]
- Ayres, E.; Steltzer, H.; Berg, S.; Wallenstein, M.D.; Simmons, B.L.; Wall, D.H. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests. PLoS ONE 2009, 4, e5964. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekciogul, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Bahn, M.; Rodeghiero, M.; Anderson-Dunn, M.; Dore, S.; Gimeno, C.; Drösler, M.; Williams, M.; Ammann, C.; Berninger, F.; Flechard, C.; et al. Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply. Ecosystems 2008, 11, 1352–1367. [Google Scholar] [CrossRef] [Green Version]
Forest Type | Slope | Density | Average DBH * | Average Height | Plot Size |
---|---|---|---|---|---|
(°) | (hm−2) | (cm) | (m) | (m) | |
PT | 20.5 | 1198 | 16.8 | 9.8 | 40 × 30 |
PO | 15 | 1176 | 11.9 | 10.7 | 40 × 40 |
QV | 20 | 1294 | 13.2 | 10.2 | 60 × 60 |
Forest Type | Thickness (mm) | Litter Biomass (g·m−2) | Fine Root Biomass (<2 mm) | Medium Root Biomass (2–5mm) | Coarse Root Biomass (>5 mm) | Root Biomass (g·m−2) | ||||
---|---|---|---|---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |||
PT | 7.54 ± 1.09 | 998.40 ± 154.78 | 273a | 156c | 173a | 108b | 43b | 52c | 489a | 316c |
PO | 3.70 ± 0.72 | 868.06 ± 177.60 | 49c | 74b | 117c | 93a | 126c | 187a | 292a | 354b |
QV | 11.04 ± 1.49 | 909.21 ± 191.00 | 117b | 122c | 131b | 139c | 56a | 75b | 304c | 336b |
Treatment | Forest Type | Soil Respiration (μg C·kg−1·h−1) | Soil Respiration Reduction Effect (%) | ||
---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | ||
Nature control | PT | 475.38 ± 339.27a | 206.36 ± 127.62b | — | — |
PO | 277.76 ± 192.56a | 144.88 ± 83.41c | |||
QV | 337.90 ± 241.62b | 157.53 ± 97.42c | |||
Litter removal | PT | 339.97 ± 258.63a | 144.95 ± 100.78b | 29.76 ± 21.03 | 28.49 ± 20.56 |
PO | 208.57 ± 158.67b | 108.09 ± 48.21c | 25.39 ± 16.39 | 22.97 ± 15.24 | |
QV | 249.95 ± 190.17a | 114.45 ± 69.10b | 27.35 ± 17.32 | 25.40 ± 12.06 | |
Root cutting | PT | 219.82 ± 150.77a | 113.11 ± 64.98b | 53.76 ± 20.03 | 45.19 ± 19.64 |
PO | 153.21 ± 116.17b | 73.74 ± 37.28a | 44.84 ± 14.76 | 49.10 ± 13.85 | |
QV | 174.82 ± 129.37b | 78.31 ± 40.34a | 48.26 ± 16.44 | 50.29 ± 18.16 |
Soil Depth | Forest Type | Functions | Q10 | R2 | p |
---|---|---|---|---|---|
5 cm | PT | Rs = 27.93e0.11T | 2.76 ± 0.48 | 0.72 | <0.001 |
PO | Rs = 65.86e0.055T | 1.93 ± 0.19 | 0.65 | <0.001 | |
QV | Rs = 37.04e0.091T | 2.28 ± 0.24 | 0.69 | <0.001 | |
15 cm | PT | Rs = 14.21e0.12T | 3.21 ± 0.67 | 0.68 | <0.001 |
PO | Rs = 40.07e0.050T | 2.37 ± 0.28 | 0.60 | <0.001 | |
QV | Rs = 9.90e0.12T | 2.64 ± 0.41 | 0.64 | <0.001 |
Soil Depth | Forest Type | Functions | R2 | p |
---|---|---|---|---|
5 cm | PT | Rs = −231.97 + 30.44T + 372.08SWC | 0.83 | <0.001 |
PO | Rs = −50.12 + 11.26T + 658.13SWC | 0.76 | <0.001 | |
QV | Rs = −272.38 + 23.92T + 1643.05SWC | 0.82 | <0.001 | |
15 cm | PT | Rs = −138.19 + 15.22T + 592.45SWC | 0.75 | <0.001 |
PO | Rs = −30.52+ 5.92T + 607.14SWC | 0.69 | <0.001 | |
QV | Rs = −143.63 + 12.79T + 759.07SWC | 0.75 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yu, X.; Jia, G.; Qin, W.; Shan, Z. Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China. Forests 2019, 10, 1081. https://doi.org/10.3390/f10121081
Wang D, Yu X, Jia G, Qin W, Shan Z. Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China. Forests. 2019; 10(12):1081. https://doi.org/10.3390/f10121081
Chicago/Turabian StyleWang, Dandan, Xinxiao Yu, Guodong Jia, Wei Qin, and Zhijie Shan. 2019. "Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China" Forests 10, no. 12: 1081. https://doi.org/10.3390/f10121081
APA StyleWang, D., Yu, X., Jia, G., Qin, W., & Shan, Z. (2019). Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China. Forests, 10(12), 1081. https://doi.org/10.3390/f10121081