Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace
Abstract
1. Introduction
2. Trajectory Prediction Model Construction
2.1. UAV Data Preprocessing
2.1.1. Cubic Spline Interpolation of Track Data
2.1.2. Track Data Normalization Processing
2.1.3. Track Data Clustering Analysis
2.2. Prediction Model Establishment
2.3. Conflict Detection Method
3. Simulation Experiment
4. Example Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.X.; Cai, K.; Zhu, Y. Civil unmanned aircraft system operation in national airspace: A survey from Air Navigation Service Provider perspective. Chin. J. Aeronaut. 2021, 34, 200–224. [Google Scholar] [CrossRef]
- Zhou, H. Legislative Development and Regulatory Challenges of the Integrated Operation of Civilian Unmanned and Manned Aircraft in China. In Emerging Rights Collection—Research on Emerging Rights in the Context of Artificial Intelligence; International Institute of Air and Space Law, Leiden University: Leiden, The Netherlands, 2024; Volume 2, p. 9. [Google Scholar]
- Su, Z.; Zhao, L.; Hao, Z.; Bai, R. Suvery of Artificial Intelligence Ensuring eVTOL Flight Safety in the Context of Low-Altitude Economy. Comput. Sci. 2025, 52, 177–189. [Google Scholar]
- Chen, S.; Jia, M.; Lin, J.; Jin, S.; Gao, Z.; Wang, Y.; Ma, Z.; Li, Z.; Duan, C.; Li, J. Research progress and prospect of the application of generative model-enabled aircraft technology. Acta Aeronaut. Astronaut. Sinica 2025, 46, 48. [Google Scholar]
- Pu, V.; Chen, Z.; Liu, Y.; Geng, X.; Zhu, Y.; Ren, K. Air traffic management technologies for digital low-altitude integrated operations. Aeronaut. J. 2025, 46, 1–23. [Google Scholar]
- Chen, Y.; Zhang, J.; Zou, X.; Wu, Q. Civil UAV traffic management architecture and key technologies. Sci. Technol. Eng. 2021, 21, 13221–13237. [Google Scholar]
- Cheng, C. Research on Aircraft Collision Avoidance and Trajectory Prediction Technology Based on Machine Learning; Nanjing University of Posts and Telecommunications: Nanjing, China, 2022. [Google Scholar]
- Wu, Z.; Tian, S.; Ma, L. A 4D trajectory prediction model based on the BP neural network. J. Intell. Syst. 2019, 29, 1545–1557. [Google Scholar] [CrossRef]
- Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8 September 2019. [Google Scholar]
- Shi, Q.; Wang, W.; Han, P. Short-term 4D trajectory prediction algorithm based on online-updating LSTM network. J. Signal Process. 2021, 7, 6–74. [Google Scholar]
- Zhang, H.; Yan, Y.; Li, S.; Hu, Y.; Liu, H. UAV Behavior-Intention Estimation Method Based on 4-D Flight-Trajectory Prediction. Sustainability 2021, 13, 12528. [Google Scholar] [CrossRef]
- Han, P.; Zhang, Q.; Shi, Q.; Zhang, Z. 4D trajectory prediction in terminal area based on DBSCAN-GRU algorithm. Signal Process. 2023, 39, 39–449. [Google Scholar]
- Liu, Y.; Xiang, J.; Luo, Z.; Jin, W. Short-term conflict detection algorithm for low-altitude free flight. J. Beijing Univ. Aeronaut. Astronaut. 2017, 43, 1873–1881. [Google Scholar]
- Miao, S.; Cheng, C.; Zhai, W.; Ren, F.; Zhang, B.; Li, S.; Zhang, J.; Zhang, H. A Low-Altitude Flight Conflict Detection Algorithm Based on a Multilevel Grid Spatiotemporal Index. ISPRS Int. J. Geo-Inf. 2019, 8, 289. [Google Scholar] [CrossRef]
- Mou, L. Conflict Detection and Resolution in Shared Airspace Between UAV and Manned Aircraft; Sichuan University: Chengdu, China, 2021. [Google Scholar]
- Wang, L.L.; Min, X.X.; Meng, L.H.; Xu, H.X. Investigation of UAV collision avoidance strategies in fusion airspace with redundant distance parameters. J. Saf. Environ. 2025, 25, 978–987. [Google Scholar]
- Yue, R.; Niu, M. Conflict detection method and resolution strategy between large fixed-wing UAV and manned aircraft. China Saf. Prod. Sci. Technol. 2025, 21, 70–78. [Google Scholar]
- Hu, J.; Yang, X.; Wang, W.; Wei, P.; Ying, L.; Liu, Y. Obstacle avoidance for UAS in continuous action space using deep reinforcement learning. IEEE Access 2022, 10, 90623–90634. [Google Scholar] [CrossRef]
- Nan, S.; Qiao, Y.; Xie, Y.; Zhang, Z.; Luo, Y.; Li, B.; Wang, J. Automatic conflict detection and resolution in digital service network requirement models using large language models. In Service Oriented Computing and Applications; Springer Nature: London, UK, 2025. [Google Scholar] [CrossRef]
- Zhu, G.; Li, M.; Wang, C.; Sun, H. Premodulation algorithm for excitation signals of parametric array based on cubic spline. J. Harbin Eng. Univ. 2025, 46, 513–520. [Google Scholar]
- Yue, R.; Niu, M. Low Altitude Multi-UAV Conflict Detection and Resolution Strategies Based on Flight Conflict Network. J. Sci. Technol. Eng. 2025, 25, 9631–9639. [Google Scholar]
- Gao, Y.; Guo, V.; Chen, J.; Li, G.; Wang, X. Prediction and resolution of conflict risk between UAV and manned aircraft in airspace. J. Saf. Environ. 2022, 22, 3288–3294. [Google Scholar]











| Number | Unit | Trait Name | Track Point |
|---|---|---|---|
| time | 6 September 2024 11:12:46 | ||
| ° | longitude | 105.3775 | |
| ° | latitude | 31.8531 | |
| ft | altitude | 1239 | |
| kt | velocity | 49 | |
| ° | heading angle | 34 |
| Time | Latitude (°) | Longitude (°) | Altitude (ft) | Velocity (kt) | Heading Angle (°) |
|---|---|---|---|---|---|
| 10:48:02 | 31.5113 | 105.6769 | 1259.8876 | 46 | 78 |
| 10:48:08 | 31.5109 | 105.6788 | 1270.3659 | 53 | 98 |
| 10:48:13 | 31.5108 | 105.6806 | 1279.3464 | 130 | 99 |
| 10:48:17 | 31.5107 | 105.6824 | 1285.3756 | 55 | 79 |
| 10:48:25 | 31.5106 | 105.6841 | 1287 | 57 | 77 |
| 10:48:29 | 31.5105 | 105.6859 | 1283.2807 | 67 | 78 |
| 10:48:34 | 31.5104 | 105.6876 | 1275.3371 | 115 | 74 |
| 10:48:40 | 31.5103 | 105.6894 | 1264.8033 | 56 | 45 |
| 11:06:22 | 31.4654 | 108.344 | 1221.8534 | 50 | 33 |
| 11:06:26 | 31.4653 | 108.346 | 1218.9998 | 52 | 72 |
| 11:06:31 | 31.4653 | 108.3481 | 1216.5666 | 122 | 34 |
| Evaluation Index | CNN-BiGRU Model | GRU Model | LSTM Model |
|---|---|---|---|
| MSE | 0.006547 | 1.380708 | 1.104536 |
| MAE | 0.0625 | 0.9210 | 0.9350 |
| RMSE | 0.080911 | 1.175036 | 1.185131 |
| MAPE | 0.022646 | 0.401564 | 0.354406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, X.; Zheng, L.; Zhao, J.; Wu, Y. Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace. Algorithms 2026, 19, 32. https://doi.org/10.3390/a19010032
Ma X, Zheng L, Zhao J, Wu Y. Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace. Algorithms. 2026; 19(1):32. https://doi.org/10.3390/a19010032
Chicago/Turabian StyleMa, Xin, Linxin Zheng, Jiajun Zhao, and Yuxin Wu. 2026. "Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace" Algorithms 19, no. 1: 32. https://doi.org/10.3390/a19010032
APA StyleMa, X., Zheng, L., Zhao, J., & Wu, Y. (2026). Cooperative 4D Trajectory Prediction and Conflict Detection in Integrated Airspace. Algorithms, 19(1), 32. https://doi.org/10.3390/a19010032

