You are currently viewing a new version of our website. To view the old version click .
Algorithms
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

20 December 2025

Multimodal Temporal Fusion for Next POI Recommendation

,
and
School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110180, China
*
Author to whom correspondence should be addressed.
Algorithms2026, 19(1), 3;https://doi.org/10.3390/a19010003 
(registering DOI)
This article belongs to the Special Issue Graph and Hypergraph Algorithms and Applications

Abstract

The objective of the next POI recommendation is using the historical check-in sequences of users to learn the preferences and habits of users, providing a list of POIs that users will be inclined to visit next. Then, there are some limitations in existing POI recommendation algorithms. On the one hand, after obtaining the user’s preferences for the current period, if we consider the entire historical check-in sequence, including future check-in information, it is susceptible to the influence of noisy data, thereby reducing the accuracy of recommendations. On the other hand, the current methods generally rely on modeling long- and short-term preferences within a fixed time window, which possibly leads to an inability to capture users’ behavior characteristics at different time scales. As a result, we proposed a Multimodal Temporal Fusion for Next POI Recommendation(MTFNR). Firstly, to understand users’ preferences and habits at different periods, multiple hypergraph neural networks are constructed to analyze user behavior patterns at different stages, and in order to avoid introducing interference factors, only the check-in sequences visited in the current period are considered to reduce the impact of noise on the model’s recommendation performance. Secondly, modeling the next POI recommendation task through the fusion of time information and long- and short-term preferences in order to gain a more comprehensive understanding of users’ preferences and habits, enhance the timeliness of recommendations, and improve the accuracy of recommendations. Lastly, introducing spatio-temporal interval information into the GRU model, capturing dependencies in sequences to improve the overall performance of the model. Extensive experiments on the real LBSN datasets demonstrated the superior performance of the MTFNR model. The experimental results indicate that Top-10 recall improved 2.81% to 15.97% compared to current methods.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.