Two Extrapolation Techniques on Splitting Iterative Schemes to Accelerate the Convergence Speed for Solving Linear Systems
Abstract
1. Introduction
2. A Reduction of Spectral Radius
3. On a Modification of the Splitting Iterative Scheme and Determining ηk
4. New Form of QAOR and Optimal Value of r
4.1. A New Form of QAOR
4.2. Determining r in QAOR
4.3. Accelerated QAOR
5. Reaccelerated over Relaxation Method
6. Three-Parameter Splitting Iterative Scheme
7. Algorithms
Algorithm 1: -acceleration |
1: Give , , , , and 2: Do , until 3: 4: Solve 5: |
Algorithm 2: -acceleration |
1: Give , , , , and 2: Do , until 3: 4: Solve 5: 6: |
Algorithm 3: for w of SOR |
1: Give , and 2: 3: Do 4: Solve 5: 6: Enddo, if |
Algorithm 4: for r of QAOR |
1: Give , w, and 2: 3: Do 4: Solve 5: 6: Enddo, if |
Algorithm 5: for r of AOR and POR |
1: Give , w, ( for AOR) 2: 3: Solve 4: |
Algorithm 6: for r of ROR and PROR |
1: Give , w, ( for ROR) 2: 3: Solve 4: |
8. Results and Discussion
Algorithm 7: for , and |
1: Give 2: Do 3: Do 4: If , ; otherwise 5: If , ; otherwise 6: If , ; otherwise 7: Enddo |
8.1. Example 1
8.2. Example 2
8.3. Example 3
8.4. Example 4
8.5. Example 5
9. Conclusions
- The splitting iterative schemes were unified in terms of descent and residual vectors.
- An extrapolation parameter in the splitting iterative scheme can improve the convergence speed.
- The NSISs were developed to maximally decrease the residual and to preserve the orthogonal property.
- The second method by adding a stepwise varying factor can stabilize the splitting iterative scheme, even the original one is unstable.
- The acceleration parameter r can be obtained readily by a maximization technique.
- The improvement of convergence speed was observed by adopting the proposed NSISs together with the optimization technique for determining the optima value of parameter.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Björck, A. Numerical Methods for Least Squares Problems; SIAM Publisher: Philadelphia, PA, USA, 1996. [Google Scholar]
- Meurant, G.; Tabbens, J.D. Krylov Methods for Non-Symmetric Linear Systems: From Theory to Computations; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 57. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Pennsylvania, PA, USA, 2003. [Google Scholar]
- Sogabe, T. Krylov Subspace Methods for Linear Systems: Principles of Algorithms; Springer: Singapore, 2023. [Google Scholar]
- van der Vorst, H.A. Iterative Krylov Methods for Large Linear Systems; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Liu, C.S.; Chang, C.W.; Kuo, C.L. Re-orthogonalized/affine GMRES and orthogonalized maximal projection algorithm for solving linear systems. Algorithms 2024, 17, 266. [Google Scholar] [CrossRef]
- Liu, C.S.; Chang, C.W. Enhance stability of successive over-relaxation method and orthogonalized symmetry successive over-relaxation in a larger range of relaxation parameter. Symmetry 2024, 16, 907. [Google Scholar] [CrossRef]
- Dongarra, J.; Sullivan, F. Guest editors’ introduction to the top 10 algorithms. Comput. Sci. Eng. 2000, 2, 22–23. [Google Scholar] [CrossRef]
- Bai, Z.Z. Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 2015, 283, 71–78. [Google Scholar] [CrossRef]
- Bouyghf, F.; Messaoudi, A.; Sadok, H. A unified approach to Krylov subspace methods for solving linear systems. Numer. Algor. 2024, 96, 305–332. [Google Scholar] [CrossRef]
- Varga, R.S. Matrix Iterative Analysis; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Young, D. Iterative methods for solving partial difference equations of elliptic type. Trans. Am. Math. Soc. 1954, 76, 92–111. [Google Scholar] [CrossRef]
- Hadjidimos, A. Accelerated overrelaxation method. Math. Comput. 1978, 32, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Dai, P. Generalized AOR methods for linear complementarity problem. Appl. Math. Comput. 2007, 188, 7–18. [Google Scholar] [CrossRef]
- Zhang, C.H.; Wang, X.; Tang, X.B. Generalized AOR method for solving a class of generalized saddle point problems. J. Comput. Appl. Math. 2019, 350, 69–79. [Google Scholar] [CrossRef]
- Wu, S.L.; Liu, Y.J. A new version of the accelerated overrelaxation iterative method. J. Appl. Math. 2014, 2014, 725360. [Google Scholar] [CrossRef]
- Cvetkovic, L.; Kostic, V. A note on the convergence of the AOR method. Appl. Math. Comput. 2007, 194, 394–399. [Google Scholar] [CrossRef]
- Gao, Z.X.; Huang, T.Z. Convergence of AOR method. Appl. Math. Comput. 2006, 176, 134–140. [Google Scholar] [CrossRef]
- Huang, Z.G.; Xu, Z.; Lu, Q.; Cui, J.J. Some new preconditioned generalized AOR methods for generalized least-squares problems. Appl. Math. Comput. 2015, 269, 87–104. [Google Scholar]
- Yun, J.H. Comparison results of the preconditioned AOR methods for L-matrices. Appl. Math. Comput. 2011, 218, 3399–3413. [Google Scholar] [CrossRef]
- Beik, P.A.F.; Shams, N.N. On the modified iterative methods for M-matrix linear systems. Bull. Iranian Math. Soc. 2015, 41, 1519–1535. [Google Scholar]
- Dehghan, M.; Hajarian, M. Modied AOR iterative methods to solve linear systems. J. Vib. Control 2014, 20, 661–669. [Google Scholar] [CrossRef]
- Huang, T.Z.; Cheng, G.H.; Evans, D.J.; Cheng, X.Y. AOR type iterations for solving preconditioned linear systems. Int. J. Comput. Math. 2005, 82, 969–976. [Google Scholar] [CrossRef]
- Moghadam, M.M.; Beik, F.P.A. Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems. Bull. Iranian Math. Soc. 2012, 38, 349–367. [Google Scholar]
- Wang, L.; Song, Y. Preconditioned AOR iterative method for M-matrices. J. Comput. Appl. Math. 2009, 226, 114–124. [Google Scholar] [CrossRef]
- Wu, M.; Wang, L.; Song, Y. Preconditioned AOR iterative method for linear systems. Appl. Numer. Math. 2007, 57, 672–685. [Google Scholar] [CrossRef]
- Liu, C.S.; El-Zahar, E.R.; Chang, C.W. An optimal combination of the splitting-linearizing method to SSOR and SAOR for solving the system of nonlinear equations. Mathematics 2024, 12, 1808. [Google Scholar] [CrossRef]
- Liu, C.S.; Chang, C.W. The SOR and AOR methods with stepwise optimized values of parameters for the iterative solutions of linear systems. Contemp. Math. 2024, 5, 4013–4028. [Google Scholar] [CrossRef]
- Vatti, V.B.K.; Rao, G.C.; Pai, S.S. Reaccelerated over relaxation (ROR) method. Bull. Int. Math. Virtual Inst. 2020, 10, 315–324. [Google Scholar]
- Isah, I.O.; Ndanusa, M.D.; Shehu, M.D.; Yusuf, A. Parametric reaccelerated overrelaxation (PROR) method for numerical solution of linear systems. Sci. World J. 2022, 17, 59–64. [Google Scholar]
- Hadjidimos, A.; Yeyois, A. The principle of extrapolatlon in connection with the accelerated overrelaxatlon method. Linear Alg. Appl. 1980, 30, 115–128. [Google Scholar] [CrossRef]
- Albrecht, P.; Klein, M.P. Extrapolated iterative methods for linear systems. SIAM J. Numer. Anal. 1984, 21, 192–201. [Google Scholar] [CrossRef]
- Hadjidimos, A. A survey of the iterative methods for the solution of linear systems by extrapolation, relaxation and other techniques. J. Comput. Appl. Math. 1987, 20, 37–51. [Google Scholar] [CrossRef]
- Hadjidimos, A. On the equivalence of extrapolation and Richardson’s iteration and its applications. Linear Alg. Appl. 2005, 402, 165–192. [Google Scholar] [CrossRef]
- Vatti, V.B.K.; Rao, G.C.; Pai, S.S. Parametric overrelaxation (PAOR) method. In Numerical Optimization in Engineering and Sciences; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 979, pp. 283–288. [Google Scholar]
- Avdelas, G.; Hadjidimos, A. Optimum accelerated overrelaxation method in a special case. Mathe. Comput. 1981, 36, 183–187. [Google Scholar] [CrossRef]
- Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer Science: New York, NY, USA, 2000. [Google Scholar]
- Salkuyeh, D.L.; Hezari, D.; Edalatpour, V. Generalized successive overrelaxation iterative method for a class of complex symmetric linear system of equations. Int. J. Comput. Math. 2015, 92, 802–815. [Google Scholar] [CrossRef]
- Li, X.A.; Zhang, W.H.; Wu, J.Y. On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations. Appl. Math. Lett. 2018, 79, 131–137. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Benzi, M.; Chen, F. Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 2010, 87, 93–111. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Benzi, M.; Chen, F. On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algor. 2011, 56, 297–317. [Google Scholar] [CrossRef]
SOR | AOR | ROR | POR | PROR |
---|---|---|---|---|
QAOR | QSOR | AOR | AOR (op. r) | SOR (op. w) | A2-SOR | A2-AOR | |
---|---|---|---|---|---|---|---|
NI | 155 | 141 | 161 | 83 | 167 | 72 | 54 |
1 | 1.2 | 1.5 | 1.8 | 1.98 | |
---|---|---|---|---|---|
0.504 | 0.407 | 0.267 | 0.154 | 0.147 | |
NI | 269 | 223 | 178 | 147 | 133 |
1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | |
---|---|---|---|---|---|---|---|
NI | 161 | 133 | 121 | 111 | 103 | 96 | 89 |
1 | 1.2 | 1.5 | 1.8 | 2 | |
---|---|---|---|---|---|
0.2843 | 0.2070 | 0.2775 | 0.4891 | 0.6495 | |
NI | 264 | 218 | 171 | 140 | 124 |
w | 0.1 | 0.3 | 0.5 | 0.8 | 1 |
---|---|---|---|---|---|
r | 3.28909 | 3.22941 | 3.16874 | 3.06835 | 3.00518 |
NI | 91 | 72 | 88 | 94 | 111 |
AOR | ROR | A1-ROR | A2-ROR | |
---|---|---|---|---|
r | 0.64131 | −1.28261 | −1.28261 | 0.84773 |
NI | 102 | 102 | 40 | 74 |
0.1 | 0.5 | 0.8 | 1.2 | |
---|---|---|---|---|
POR | 117 | 152 | 178 | 198 |
A1-POR | 58 | 67 | 80 | 90 |
0.1 | 0.3 | 0.5 | 0.8 | |
---|---|---|---|---|
PROR | 137 | 167 | 185 | 200 |
A1-PROR | 59 | 75 | 83 | 93 |
AOR | AOR (op. r) | A1-AOR | Al-AOR (op. r) | ROR | Al-ROR (op. r) | |
---|---|---|---|---|---|---|
NI | 96 | 62 | 47 | 45 | 46 | 45 |
1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | |
---|---|---|---|---|---|---|
NI | 62 | 51 | 49 | 48 | 46 | 48 |
1.3 | 1.4 | 1.45 | 1.5 | 1.6 | |
---|---|---|---|---|---|
NI | 113 | 128 | 109 | 140 | 165 |
1.25 | 1.3 | 1.4 | 1.45 | 1.5 | 1.6 | |
---|---|---|---|---|---|---|
NI | 114 | 77 | 100 | 85 | 98 | 142 |
w | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
---|---|---|---|---|---|---|
1.3 | 1.4 | 1.3 | 1.5 | 1.5 | 1.6 | |
NI | 97 | 88 | 81 | 74 | 58 | 76 |
n | 200 | 450 | 800 | 1250 | 1800 | 2450 |
---|---|---|---|---|---|---|
r | 0.737113 | 0.740454 | 0.738657 | 0.736292 | 0.734101 | 0.732191 |
NI | 64 | 93 | 98 | 133 | 148 | 158 |
CPU | 0.35 | 0.67 | 2.44 | 7.05 | 15.86 | 33.89 |
n | 200 | 450 | 800 | 1250 | 1800 | 2450 |
---|---|---|---|---|---|---|
NI | 40 | 57 | 73 | 86 | 92 | 100 |
CPU | 0.34 | 0.67 | 1.59 | 4.41 | 10.12 | 20.85 |
Method | HSS | MHSS | SBTS | GSOR | A1-AOR |
---|---|---|---|---|---|
NI | 65 | 54 | 31 | 22 | 106 |
n | cond(A) | n | cond(A) |
---|---|---|---|
3 | 7 | ||
4 | 8 | ||
5 | 9 | ||
6 | 10 |
n | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|
NI | 328 | 514 | 448 | 725 | 757 |
ME | |||||
RMSE |
n | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|
w | 0.156725 | 0.111880 | 0.082611 | 0.073455 | 0.063021 |
NI | 76 | 248 | 299 | 298 | 294 |
ME | |||||
RMSE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-S.; Li, B. Two Extrapolation Techniques on Splitting Iterative Schemes to Accelerate the Convergence Speed for Solving Linear Systems. Algorithms 2025, 18, 440. https://doi.org/10.3390/a18070440
Liu C-S, Li B. Two Extrapolation Techniques on Splitting Iterative Schemes to Accelerate the Convergence Speed for Solving Linear Systems. Algorithms. 2025; 18(7):440. https://doi.org/10.3390/a18070440
Chicago/Turabian StyleLiu, Chein-Shan, and Botong Li. 2025. "Two Extrapolation Techniques on Splitting Iterative Schemes to Accelerate the Convergence Speed for Solving Linear Systems" Algorithms 18, no. 7: 440. https://doi.org/10.3390/a18070440
APA StyleLiu, C.-S., & Li, B. (2025). Two Extrapolation Techniques on Splitting Iterative Schemes to Accelerate the Convergence Speed for Solving Linear Systems. Algorithms, 18(7), 440. https://doi.org/10.3390/a18070440