Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness
Abstract
:1. Introduction
1.1. Background
1.2. Contributions
- We implement a hybrid image watermarking method that ensures high imperceptibility, improved robustness, enhanced security, and high embedding capacity to the system simultaneously.
- We embed an indistinguishable watermark image into the cover image and we also ensure the security of the watermark image by using the Arnold map.
- We use a dynamically sized watermark image that maintains a balanced visual impact by preventing the watermark from being too small or too large.
2. Related Literature and Problem Statement
2.1. Literature Review
2.2. Problem Statement
- Existing hybrid domain algorithms fail to maintain a proper balance among imperceptibility, robustness, security, and capacity simultaneously.
- Certain algorithms utilize visible images as watermarks, which are unsuitable for identifying authentic recipients.
- Can watermark image be easily applied to new content without any adjustment?
- Some methods lack the incorporation of security techniques for encrypting the watermark image.
- The majority of the methods overlook hybrid attacks and do not calculate the watermark embedding capacity.
3. Theoretical Background
3.1. Arnold Map
3.2. Discrete Wavelet Transform (DWT)
3.3. Singular Value Decomposition (SVD)
4. Proposed Methodology
Algorithm 1 Watermark Embedding Algorithm |
Input: Watermark image, w, and host image, I, both of size 512 × 512 pixels Output: Watermarked image, Apply 4L DWT to host image; ; ; ; ; Apply 2L SVD on ; ; ; Resize the watermark image, w, to the size of (32 × 32 pixels); Apply the Arnold map to encrypt the watermark image: ; Apply 2L SVD to ; ; ; Insert S components of the watermark image into the S components of the host image with a scaling factor . The embedding equation is: ; Rebuild the sub-band; ; Apply inverse DWT (IDWT) to obtain ; ; ; ; ; |
Algorithm 2 Watermark Extraction Algorithm |
Input: Watermarked image, Output: Watermark image, w Apply 4L DWT to ; ; ; ; ; Apply SVD to ; ; Extract the S component; ; Apply ISVD to ; ; Apply the inverse Arnold map to to obtain watermark image, w; ; |
5. Experimental Results and Analysis
5.1. Imperceptibility Analysis
5.2. Robustness Analysis
5.2.1. Noise Attack
5.2.2. Filter Attack
5.2.3. Geometric and Blur Attacks
5.2.4. Hybrid Attacks
5.3. Security Analysis
5.4. Capacity Analysis
5.5. Comparison with Existing Methods
5.5.1. Imperceptibility Comparison
5.5.2. Robustness Comparison
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, I.; Miller, M.; Bloom, J.; Fridrich, J.; Kalker, T. Digital Watermarking and Steganography; Morgan Kaufmann: San Francisco, CA, USA, 2007. [Google Scholar]
- Singh, R.K.; Shaw, D.K.; Sahoo, J. A secure and robust block based DWT-SVD image watermarking approach. J. Inf. Optim. Sci. 2017, 38, 911–925. [Google Scholar] [CrossRef]
- Begum, M.; Ferdush, J.; Uddin, M.S. A Hybrid robust watermarking system based on discrete cosine transform, discrete wavelet transform, and singular value decomposition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5856–5867. [Google Scholar] [CrossRef]
- Zhao, X.; Ho, A.T. An introduction to robust transform based image watermarking techniques. Intell. Multimed. Anal. Secur. Appl. 2010, 282, 337–364. [Google Scholar]
- Tao, H.; Chongmin, L.; Zain, J.M.; Abdalla, A.N. Robust image watermarking theories and techniques: A review. J. Appl. Res. Technol. 2014, 12, 122–138. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Pavlopoulos, S.; Koutsouris, D. Multiple image watermarking applied to health information management. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Soon, Y.; Zhou, F.; Li, Z.; Lei, H. A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Process. 2012, 92, 1985–2001. [Google Scholar] [CrossRef]
- Lei, B.; Soon, Y.; Tan, E.L. Robust SVD-based audio watermarking scheme with differential evolution optimization. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 2368–2378. [Google Scholar] [CrossRef]
- Lei, B.; Ni, D.; Chen, S.; Wang, T.; Zhou, F. Optimal image watermarking scheme based on chaotic map and quaternion wavelet transform. Nonlinear Dyn. 2014, 78, 2897–2907. [Google Scholar] [CrossRef]
- Megalingam, R.K.; Nair, M.M.; Srikumar, R.; Balasubramanian, V.K.; Sarma, V.S.V. Performance comparison of novel, robust spatial domain digital image watermarking with the conventional frequency domain watermarking techniques. In Proceedings of the 2010 International Conference on Signal Acquisition and Processing, Bangalore, India, 9–10 February 2010; pp. 349–353. [Google Scholar]
- Rasti, P.; Anbarjafari, G.; Demirel, H. Colour image watermarking based on wavelet and QR decomposition. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4. [Google Scholar]
- Singh, S.; Singh, R.; Singh, A.K.; Siddiqui, T.J. SVD-DCT based medical image watermarking in NSCT domain. Quantum Comput. Environ. Intell. Large Scale Real Appl. 2018, 33, 467–488. [Google Scholar]
- Najafi, E.; Loukhaoukha, K. Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J. Inf. Secur. Appl. 2019, 44, 144–156. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Wang, C. A robust image watermarking technique based on DWT, APDCBT, and SVD. Symmetry 2018, 10, 77. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Luo, Y.; Cao, L.; Yang, S.; Wei, D.; Zhou, R. An optimized image watermarking method based on HD and SVD in DWT domain. IEEE Access 2019, 7, 80849–80860. [Google Scholar] [CrossRef]
- Dhar, P.K.; Hazra, P.; Shimamura, T. Blind color image watermarking using fan Beam transform and QR decomposition. Symmetry 2020, 12, 486. [Google Scholar] [CrossRef]
- Begum, M.; Uddin, M.S. Implementation of secured and robust DFT-based image watermark through hybridization with decomposition algorithm. SN Comput. Sci. 2021, 2, 221. [Google Scholar] [CrossRef]
- Alzahrani, A.; Memon, N.A. Blind and robust watermarking scheme in hybrid domain for copyright protection of medical images. IEEE Access 2021, 9, 113714–113734. [Google Scholar] [CrossRef]
- Srivastava, R.; Tomar, R.; Gupta, M.; Yadav, A.K.; Park, J. Image watermarking approach using a hybrid domain based on performance parameter analysis. Information 2021, 12, 310. [Google Scholar] [CrossRef]
- Nejati, F.; Sajedi, H.; Zohourian, A. Fragile watermarking based on QR decomposition and Fourier transform. Wirel. Pers. Commun. 2022, 122, 211–227. [Google Scholar] [CrossRef]
- Thanki, R.; Kothari, A.; Borra, S. Hybrid, blind and robust image watermarking: RDWT–NSCT based secure approach for telemedicine applications. Multimed. Tools Appl. 2021, 80, 27593–27613. [Google Scholar] [CrossRef]
- Yasmeen, F.; Uddin, M.S. An efficient watermarking approach based on LL and HH edges of DWT–SVD. SN Comput. Sci. 2021, 2, 82. [Google Scholar] [CrossRef]
- Zeng, F.; Bai, H.; Xiao, K. Blind watermarking algorithm combining NSCT, DWT, SVD, and HVS. Secur. Priv. 2022, 5, e223. [Google Scholar] [CrossRef]
- Da Cunha, A.L.; Zhou, J.; Do, M.N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef] [PubMed]
- Discrete Wavelet Transform. Wikipedia. Available online: https://en.wikipedia.org/wiki/Discrete_wavelet_transform (accessed on 1 April 2023).
- Begum, M.; Uddin, M.S. Digital image watermarking techniques: A review. Information 2020, 11, 110. [Google Scholar] [CrossRef]
- Kalman, D. A singularly valuable decomposition: The SVD of a matrix. Coll. Math. J. 1996, 27, 2–23. [Google Scholar] [CrossRef]
- Ford, W. Numerical Linear Algebra with Applications: Using MATLAB; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pratt, W.K. Introduction to Digital Image Processing; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Netravali, A. Digital Pictures: Representation and Compression; Springer Science & Business Media: Boston, MA, USA, 2013. [Google Scholar]
- Chen, J.M.; Lin, P. A reliable enhanced watermarking based on NSCT and SVD. Adv. Inf. Sci. Serv. Sci. 2013, 5, 629. [Google Scholar]
- Database. Available online: http://sipi.usc.edu/database/ (accessed on 14 May 2023).
- Image Databases—Imageprocessingplace.com. Available online: https://imageprocessingplace.com/root_files_V3/image_databases.htm (accessed on 17 June 2023).
- Chest X-ray Images (Pneumonia)—kaggle.com. Available online: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (accessed on 17 June 2023).
- ECG Heartbeat Categorization Dataset—kaggle.com. Available online: https://www.kaggle.com/shayanfazeli/heartbeat/ (accessed on 17 June 2023).
- Srinivasan, S. Fish Species Image Data. Kaggle, Year of Dataset Publication. Available online: https://www.kaggle.com/sripaadsrinivasan/fish-species-image-data/ (accessed on 14 May 2023).
- Aalborg University Brackish Dataset. Kaggle, 2023. Available online: https://www.kaggle.com/aalborguniversity/brackish-dataset/ (accessed on 14 May 2023).
- Qiu, J.; Tian, Z.; Du, C.; Zuo, Q.; Su, S.; Fang, B. A Survey on Access Control in the Age of Internet of Things. IEEE Internet Things J. 2020, 7, 4682–4696. [Google Scholar] [CrossRef]
- Hao, K.; Feng, G.; Zhang, X. Robust image watermarking based on generative adversarial network. China Commun. 2020, 17, 131–140. [Google Scholar] [CrossRef]
- Lin, X.; Li, C.T. Refining PRNU-based detection of image forgeries. In Proceedings of the 2016 Digital Media Industry & Academic Forum (DMIAF), Santorini, Greece, 4–6 July 2016; pp. 222–226. [Google Scholar] [CrossRef]
- Bertini, F.; Sharma, R.; Montesi, D. Are Social Networks Watermarking Us or Are We (Unawarely) Watermarking Ourself? J. Imaging 2022, 8, 132. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Shan, C.; Song, H.; Lv, Z. A Dual-Embedded Tamper Detection Framework Based on Block Truncation Coding for Intelligent Multimedia Systems. Inf. Sci. 2023, 649, 119362. [Google Scholar] [CrossRef]
- Li, M.; Shan, C.; Tian, Z.; Du, X.; Mohsen, G. Adaptive Information Hiding Method Based on Feature Extraction for Visible Light Communication. IEEE Commun. Mag. 2023, 61, 102–106. [Google Scholar] [CrossRef]
Image Type | Image Name | PSNR (dB) | SSIM |
---|---|---|---|
Miscellaneous | Pepper | 48.9192 | 0.9997 |
Female | 48.6165 | 0.9995 | |
Baboon | 48.7890 | 0.9999 | |
Lena | 48.6339 | 0.9998 | |
Texture | Straw | 48.8687 | 0.9999 |
Grass | 48.8001 | 1.0000 | |
Medical Image | Chest X-ray | 48.9688 | 0.9997 |
ECG signal | 48.5490 | 0.9998 | |
Underwater Image | Fish Species | 48.8687 | 0.9997 |
Marine Animal | 48.5780 | 0.9993 |
Image Type | Image Name | SN | GN | SPN | PN |
---|---|---|---|---|---|
Miscellaneous | Pepper | 0.9916 | 0.9911 | 0.9915 | 0.9469 |
female | 0.9905 | 0.9909 | 0.9906 | 0.9313 | |
Baboon | 0.9942 | 0.9924 | 0.9944 | 0.9446 | |
Lena | 0.9933 | 0.9920 | 0.9929 | 0.9674 | |
Texture | Straw | 0.9912 | 0.9922 | 0.9936 | 0.9643 |
Grass | 0.9946 | 0.9955 | 0.9954 | 0.9776 | |
Medical Image | Chest X-ray | 0.9941 | 0.9923 | 0.9951 | 0.9707 |
ECG signal | 0.9957 | 0.9927 | 0.9953 | 0.9640 | |
Underwater Image | Fish Species | 0.9944 | 0.9920 | 0.9944 | 0.9744 |
Marine Animal | 0.9904 | 0.9908 | 0.9914 | 0.9468 |
Image Type | Image Name | AF | MF | WF | LPGF |
---|---|---|---|---|---|
Miscellaneous | Pepper | 0.9431 | 0.9789 | 0.9897 | 0.9978 |
Female | 0.9576 | 0.9978 | 0.9952 | 0.9993 | |
Baboon | 0.9512 | 0.8753 | 0.9652 | 0.9963 | |
Lena | 0.9713 | 0.9803 | 0.9936 | 0.9983 | |
Texture | Straw | 0.9641 | 0.9520 | 0.9732 | 0.9972 |
Grass | 0.9245 | 0.9854 | 0.8967 | 0.9963 | |
Medical Image | Chest X-ray | 0.9627 | 0.9942 | 0.9940 | 0.9994 |
ECG signal | 0.9233 | 0.8437 | 0.9517 | 0.9954 | |
Underwater Image | Fish Species | 0.9849 | 0.9658 | 0.9942 | 0.9989 |
Marine Animal | 0.9939 | 0.9997 | 0.9993 | 0.9999 |
Image Type | Image Name | Resize | JPEG Compression | Image Blur |
---|---|---|---|---|
Miscellaneous | Pepper | 0.9934 | 0.9923 | 0.9974 |
female | 0.9907 | 0.9903 | 0.9978 | |
Baboon | 0.9948 | 0.9961 | 0.9970 | |
Lena | 0.9935 | 0.9943 | 0.9988 | |
Texture | Straw | 0.9936 | 0.9939 | 0.9978 |
Grass | 0.9943 | 0.9951 | 0.9969 | |
Medical Image | Chest X-ray | 0.9944 | 0.9946 | 0.9981 |
ECG signal | 0.9929 | 0.9955 | 0.9952 | |
Underwater Image | Fish Species | 0.9950 | 0.9950 | 0.9991 |
Marine Animal | 0.9917 | 0.9921 | 0.9995 |
Image Type | Image Name | MF+Blur | SPN+WF | WF+GN | SN+MF | MF+PN |
---|---|---|---|---|---|---|
Miscellaneous | Pepper | 0.9656 | 0.9834 | 0.9885 | 0.9750 | 0.9623 |
Female | 0.9952 | 0.9841 | 0.9934 | 0.9865 | 0.9824 | |
Baboon | 0.8657 | 0.9549 | 0.9654 | 0.8772 | 0.8907 | |
Lena | 0.9718 | 0.9805 | 0.9902 | 0.9730 | 0.9554 | |
Texture | Straw | 0.9412 | 0.9657 | 0.9755 | 0.9469 | 0.9371 |
Grass | 0.9834 | 0.8602 | 0.8940 | 0.9840 | 0.9820 | |
Medical Image | Chest X-ray | 0.9906 | 0.9851 | 0.9929 | 0.9802 | 0.9638 |
ECG signal | 0.8329 | 0.9438 | 0.9493 | 0.8335 | 0.8859 | |
Underwater Image | Fish Species | 0.9589 | 0.9907 | 0.9919 | 0.9627 | 0.9417 |
Marine Animal | 0.9995 | 0.9910 | 0.9979 | 0.9905 | 0.9269 |
Host Image | Watermark Image | Bit Depth | PSNR (dB) | SSIM |
---|---|---|---|---|
Pepper | Copyright | 1024, 512, 256, 128, 64, 32, 16 | 47.5334 | 0.9984 |
8 | 48.8636 | 0.9988 | ||
2, 4 | Infinite | 1 |
Parameter | Begum et al., 2021 [3] | Begum et al., 2021 [17] | Alzahrani et al., 2021 [18] | Srivastava et al., 2021 [19] | Nejati et al., 2021 [20] | Thanki et al., 2021 [21] | Yasmeen et al., 2021 [22] | Zeng et al., 2022 [23] | Proposed Method |
---|---|---|---|---|---|---|---|---|---|
Method | DCT+ DWT+ SVD | DFT+ SVD | DWT+ DCT+ SVD | DWT+ DCT | Fourier transform+ QR decomposition | NSCT + RDWT | DWT+ SVD | NSCT+ DWT+ SVD | DWT+ SVD |
Cover Image Type | Lena | Lena | Medical image | Pepper | Lena, Baboon, House, Sailboat | Pepper, medical image | Lena | Lena | Pepper, Lena, Chest X-ray |
Cover Image Size and Color | 512 × 512, grayscale | 512 × 512, grayscale | 1024 × 1024, grayscale | 512 × 512, grayscale | 512 × 512, color | 512 × 512, grayscale | 512 × 512, grayscale and color | 512 × 512, grayscale | 512 × 512, grayscale |
Watermark Image Type | Panda | Panda | Hospital logo. text watermark | Text image | Pepper | Logo | Logo | Cameraman | Copyright |
Watermark Image Size and Color | 64 × 64, grayscale | 64 × 64, grayscale | 32 × 32, 128 × 8 grayscale | 64 × 64, grayscale | 512 × 512, color | 32 × 128, grayscale | 256 × 256, grayscale | 32 × 32, binary | 32 × 32, grayscale |
PSNR (dB) | 57.63 | 50.91 | 44.05 | >69 | 62.74 | 57.60 (pepper), 40.89 (medical image) | 43.84 (grayscale), 34.73 (color) | 46.56 | Pepper (48.92), Lena (48.63), Chest X-ray (48.97) |
SSIM | 0.9984 | 0.9745 | 0.9800 | - | 0.9998 | 0.9991 (pepper), 0.9994 (medical image) | 0.9909 (grayscale), 0.9885 (color) | - | Pepper (0.9997), Lena (0.9998), Chest X-ray (0.9997) |
Security Technique | Arnold map | Chaotic map | Arnold transform and pseudo random (PN) sequence | Arnold map | - | PN sequence | - | Arnold map | Arnold transform |
Applications | Copyright protection | Copyright protection | Copyright protection | Data integrity | Medical image security | Telemedicine | Copyright protection | - | Copyright protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, M.; Shorif, S.B.; Uddin, M.S.; Ferdush, J.; Jan, T.; Barros, A.; Whaiduzzaman, M. Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness. Algorithms 2024, 17, 32. https://doi.org/10.3390/a17010032
Begum M, Shorif SB, Uddin MS, Ferdush J, Jan T, Barros A, Whaiduzzaman M. Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness. Algorithms. 2024; 17(1):32. https://doi.org/10.3390/a17010032
Chicago/Turabian StyleBegum, Mahbuba, Sumaita Binte Shorif, Mohammad Shorif Uddin, Jannatul Ferdush, Tony Jan, Alistair Barros, and Md Whaiduzzaman. 2024. "Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness" Algorithms 17, no. 1: 32. https://doi.org/10.3390/a17010032
APA StyleBegum, M., Shorif, S. B., Uddin, M. S., Ferdush, J., Jan, T., Barros, A., & Whaiduzzaman, M. (2024). Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition for Enhanced Imperceptibility and Robustness. Algorithms, 17(1), 32. https://doi.org/10.3390/a17010032