Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition
Abstract
:1. Introduction
2. Special Issue
Acknowledgments
Conflicts of Interest
References
- Fulcher, J. Computational intelligence: An introduction. In Computational Intelligence: A Compendium; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Nauck, D.; Klawonn, F.; Kruse, R. Foundations of Neuro-Fuzzy Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Yang, X.S. Nature-Inspired Algorithms and Applied Optimization; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Koza, J.R.; Keane, M.A.; Streeter, M.J.; Mydlowec, W.; Yu, J.; Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine Intelligence; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112. [Google Scholar] [CrossRef]
- Cagnoni, S. Evolutionary computer vision: A taxonomic tutorial. In Proceedings of the eighth International Conference on Hybrid Intelligent Systems, HIS 2008, Barcelona, Spain, 10–12 September 2008. [Google Scholar]
- Cagnoni, S.; Dobrzeniecki, A.B.; Poli, R.; Yanch, J.C. Genetic algorithm-based interactive segmentation of 3D medical images. Image Vis. Comput. 1999, 17, 881–895. [Google Scholar] [CrossRef]
- Cagnoni, S.; Mordonini, M.; Sartori, J. Particle swarm optimization for object detection and segmentation. In Workshops on Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Castelli, M.; Vanneschi, L.; De Felice, M. Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case. Energy Econ. 2015, 47, 37–41. [Google Scholar] [CrossRef]
- Castelli, M.; Castaldi, D.; Giordani, I.; Silva, S.; Vanneschi, L.; Archetti, F.; Maccagnola, D. An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In Portuguese Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Castelli, M.; Vanneschi, L. Genetic algorithm with variable neighborhood search for the optimal allocation of goods in shop shelves. Oper. Res. Lett. 2014, 42, 355–360. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagnoni, S.; Castelli, M. Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition. Algorithms 2018, 11, 25. https://doi.org/10.3390/a11030025
Cagnoni S, Castelli M. Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition. Algorithms. 2018; 11(3):25. https://doi.org/10.3390/a11030025
Chicago/Turabian StyleCagnoni, Stefano, and Mauro Castelli. 2018. "Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition" Algorithms 11, no. 3: 25. https://doi.org/10.3390/a11030025
APA StyleCagnoni, S., & Castelli, M. (2018). Special Issue on Computational Intelligence and Nature-Inspired Algorithms for Real-World Data Analytics and Pattern Recognition. Algorithms, 11(3), 25. https://doi.org/10.3390/a11030025