A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement
Abstract
:1. Introduction
2. Design Specifications
3. Measurement Results
Parameter | With MSS | Without MSS | ||||
---|---|---|---|---|---|---|
1st Band | 2nd Band | 3rd Band | 1st Band | 2nd Band | 3rd Band | |
Bandwidth | 500 MHz | 450 MHz | 300 MHz | 400 MHz | 700 MHz | 400 MHz |
Maximum Gain | 8.25 dBi | 9.05 dBi | 12.15 dBi | 6.21 dBi | 6.52 dBi | 10.54 dBi |
Maximum Directivity | 4.17 dB | 12.22 dB | 13.23 dB | 2.99 dB | 5.93 dB | 9.81 dB |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Veselago, V. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Islam, M.T.; Ullah, M.H.; Singh, M.J.; Faruque, M.R.I. A new metasurface superstrate structure for antenna performance enhancement. Materials 2013, 6, 3226–3240. [Google Scholar] [CrossRef]
- Chaimool, S.; Chung, K.L.; Akkaraekthalin, P. Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface. IEICE Trans. Commun. 2010, E93-B, 2496–2503. [Google Scholar] [CrossRef]
- Chung, K.L.; Chaimool, S. Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface. Microw. Opt. Technol. Lett. 2012, 54, 529–532. [Google Scholar] [CrossRef]
- Habib Ullah, M.; Islam, M.T.; Mandeep, J.S.; Misran, N.; Nikabdullah, N. A compact wideband antenna on dielectric material substrate for K band. Electron. Electr. Eng. 2012, 123. [Google Scholar]
- Honari, M.M.; Abdipour, A.; Moradi, G. Bandwidth and gain enhancement of an aperture antenna with modified ring patch. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1413–1416. [Google Scholar] [CrossRef]
- Yang, G.-M.; Xing, X.; Daigle, A.; Obi, O.; Liu, M.; Lou, J.; Stoute, S.; Naishadham, K.; Sun, N.X. Planar annular ring antennas with multilayer self-biased NiCo-Ferrite films loading. IEEE Trans. Antennas Propag. 2010, 58, 648–655. [Google Scholar] [CrossRef]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Lee, Y.J.; Yeo, J.; Mittra, R.; Park, W.S. Design of a high-directivity Electromagnetic Band Gap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate. Microw. Opt. Technol. Lett. 2004, 43, 462–467. [Google Scholar] [CrossRef]
- Yang, F.-R.; Ma, K.-P.; Qian, Y.; Itoh, T. A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit. IEEE Trans. Microw. Theory Tech. 1999, 47, 1509–1514. [Google Scholar] [CrossRef]
- Ge, Y.; Esselle, K.P.; Bird, T.S. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. Antennas Propag. 2012, 60, 743–750. [Google Scholar] [CrossRef]
- Enoch, S.; Tayeb, G.; Sabouroux, P.; Guérin, N.; Vincent, P. A metamaterial for directive emission. Phys. Rev. Lett. 2002, 89. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A. Microstrip Antenna Design Handbook; Massachusetts, Artech House Inc.: London, UK, 2001. [Google Scholar]
- Zhou, H.; Pei, Z.; Qu, S.; Zhang, S.; Wang, J.; Li, Q.; Xu, Z. A planar zero-index metamaterial for directive emission. J. Electromagn. Waves Appl. 2009, 23, 953–962. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Saenz, E.; Ederra, I.; Gonzalo, R.; Pivnenko, S.; Breinbjerg, O.; de Maagt, P. Coupling reduction between dipole antenna elements by using a planar meta-surface. Antennas Propag. IEEE Trans. 2009, 57, 383–394. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2012. [Google Scholar]
- Smith, D.R.; Schultz, S.; Markos, P.; Soukoulis, C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65. [Google Scholar] [CrossRef]
- Laure, P.; Puaux, G.; Silva, L.; Vincent, M. Permeability computation on a REV with an immersed finite element method. AIP Conf. Proc. 2011, 1353, 978–983. [Google Scholar]
- Chaimool, S.; Rakluea, C.; Akkaraekthalin, P. Mu-near-zero metasurface for microstrip-fed slot antennas. Appl. Phys. 2013, 112, 669–675. [Google Scholar] [CrossRef]
- Berdichevsky, A.L.; Cai, Z. Preform permeability predictions by self-consistent method and finite element simulation. Polym. Compos. 1993, 14, 132–143. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, K.; Nasimuddin; Alphones, A. RIS-based compact circularly polarized microstrip antennas. IEEE Trans. Antennas Propag. 2013, 61, 547–554. [Google Scholar] [CrossRef]
- Cook, B.S.; Shamim, A. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 76–79. [Google Scholar] [CrossRef]
- Mandal, K.; Sarkar, P.P. A compact high gain microstrip antenna for wireless applications. AEU Int. J. Electron. Commun. 2013, 67, 1010–1014. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ullah, M.H.; Islam, M.T.; Faruque, M.R.I. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement. Materials 2013, 6, 5058-5068. https://doi.org/10.3390/ma6115058
Ullah MH, Islam MT, Faruque MRI. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement. Materials. 2013; 6(11):5058-5068. https://doi.org/10.3390/ma6115058
Chicago/Turabian StyleUllah, Mohammad Habib, Mohammad Tariqul Islam, and Mohammad Rashed Iqbal Faruque. 2013. "A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement" Materials 6, no. 11: 5058-5068. https://doi.org/10.3390/ma6115058
APA StyleUllah, M. H., Islam, M. T., & Faruque, M. R. I. (2013). A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement. Materials, 6(11), 5058-5068. https://doi.org/10.3390/ma6115058