Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments
Highlights
- Archeological environments were simulated based on soluble components of archeological soils.
- Corrosion behaviors of Cu–Sn alloys in different environments were studied.
- The corrosion rate in Cl environments was 20~50 times that in archaeological environments.
- The loose and easily detached rust layers were responsible for the greater corrosion rate of Cl-24.
- The dense rust layer and low wettability endowed SS-24 with superior corrosion resistance.
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Simulated Corrosion Treatments
2.3. Electrochemical Corrosion Tests
2.4. Characterization Methods
2.4.1. Contact Angle Measurement and Roughness Tester
2.4.2. Morphology Observations
2.4.3. Composition Characterizations
3. Results and Discussion
3.1. Structural Characterization
3.1.1. Metallographic Analysis
3.1.2. SEM and EDS Analysis
3.1.3. Contact Angle and Roughness Analysis
3.2. Chemical Compositions
3.2.1. XRD Analysis
3.2.2. XPS Analysis
3.3. Electrochemical Corrosion Behaviors
3.3.1. Open Circuit Potential (OCP) Curves
3.3.2. Tafel Polarization Curves
3.3.3. EIS Curves
3.3.4. Effect of Rust Layers Formed in Archaeological Soil Environments
3.4. The Corrosion Mechanism of Cu-Sn Alloy in Two Corrosive Environments
4. Conclusions
- (1)
- In a 3.5 wt.% NaCl solution, the icorr of Cu-Sn alloys increased from 4.845 μA·cm−2 to 27.21 μA·cm−2, forming a loose and porous structure of CuCl and Cu2(OH)3Cl. In contrast, in the simulated archaeological soil solution, the icorr remained below 1.6 μA·cm−2, and the rust layer was compact and stable, primarily composed of Cu2(OH)2CO3 and CuO.
- (2)
- The stable rust layer exhibited lower roughness and a smaller contact angle than the unstable rust layer that formed in the NaCl environment, which significantly slowed further penetration of corrosive media and further enhanced corrosion resistance by about two orders of magnitude.
- (3)
- EIS measurements and polarization curves showed that the Rct in the simulated archaeological soil solution was significantly higher than that in the 3.5% NaCl solution (up to 416.7 kΩ·cm2), and the stability of OCP was significantly improved, indicating that the corrosion product layer possessed excellent passivation and protective properties.
- (4)
- The alloy, when pre-corroded for 24 h in the simulated archaeological soil solution, exhibited a lower icorr (0 h: 7.120 μA·cm−2, 2 h: 9.426 μA·cm−2) and a higher Rct (0 h: 8.124 kΩ·cm2 h: 3.118 × 109 kΩ·cm2) when subsequently immersed in an NaCl solution, indicating that the dense corrosion product layer formed during pre-corrosion can effectively delay the infiltration of Cl−.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Li, Y.; Jiang, X.; Pan, C. Research Progress on Ancient Bronze Corrosion in Different Environments and Using Different Conservation Techniques: A Review. MRS Adv. 2017, 2, 2033–2041. [Google Scholar]
- Ghalichi, A.; Reinhold, S.; Rohrlach, A.B.; Kalmykov, A.A.; Childebayeva, A.; Yu, H.; Aron, F.; Semerau, L.; Bastert-Lamprichs, K.; Belinskiy, A.B.; et al. The rise and transformation of Bronze Age pastoralists in the Caucasus. Nature 2024, 635, 917–925. [Google Scholar] [PubMed]
- Guadagnini, L.; Chiavari, C.; Martini, C.; Bernardi, E.; Morselli, L.; Tonelli, D. The use of scanning electrochemical microscopy for the characterisation of patinas on copper alloys. Electrochim. Acta 2011, 56, 6598–6606. [Google Scholar]
- Di Carlo, G.; Giuliani, C.; Riccucci, C.; Pascucci, M.; Messina, E.; Fierro, G.; Lavorgna, M.; Ingo, G.M. Artificial patina formation onto copper-based alloys: Chloride and sulphate induced corrosion processes. Appl. Surf. Sci. 2017, 421, 120–127. [Google Scholar]
- Zhao, T.; Zhao, L.; Feng, Y.; Luo, Q.; Zhong, J.; Li, Q. Corrosion of ancient Chinese bronze fragments from different periods and protective effect of menthol coating. Corros. Commun. 2023, 12, 46–57. [Google Scholar]
- Veleva, L.; Farro, W. Influence of seawater and its aerosols on copper patina composition. Appl. Surf. Sci. 2012, 258, 10072–10076. [Google Scholar]
- Chiavari, C.; Rahmouni, K.; Takenouti, H.; Joiret, S.; Vermaut, P.; Robbiola, L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim. Acta 2007, 52, 7760–7769. [Google Scholar]
- Liang, Z.; Jiang, K.; Zhang, T. Corrosion behaviour of lead bronze from the Western Zhou Dynasty in an archaeological-soil medium. Corros. Sci. 2021, 191, 109721. [Google Scholar]
- Han, Z.; Huang, X.; Chen, J.; Chen, J. 2-Mercaptobenzimidazole compounded with the conventional sealer B72 for the protection of rusted bronze. J. Cult. Herit. 2024, 67, 42–52. [Google Scholar]
- Wang, Y.; Long, S.; Wang, X.; Liu, F.; Ma, Q. New insights on the analysis of the causes of glossy lustre on the surface of ancient Chinese bronze mirrors. Herit. Sci. 2024, 12, 136. [Google Scholar]
- Zhang, Y.; Li, P.; Zheng, X.; Zhou, S.; Huang, X.; Chen, J. In Design of High Sensitivity Cellulose Filter Paper-based SERS Flexible Substrate for Testing Harmful Rust of Bronze Ware. J. Phys. Conf. Ser. 2023, 2499, 012023. [Google Scholar]
- Kwon, H. Corrosion behaviors of artificial chloride patina for studying bronze sculpture corrosion in marine environments. Coatings 2023, 13, 1630. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Chen, J.; Li, J.; Zhou, S.; Chen, J. UiO-66 Particles Decorated with Ag/Au Nanoparticles as SERS Sensors for Detecting Harmful Patina in Trace Analysis of Ancient Bronze Art. ACS Appl. Nano Mater. 2024, 7, 4277–4287. [Google Scholar]
- Armetta, F.; Saladino, M.L.; Scherillo, A.; Caponetti, E. Microstructure and phase composition of bronze Montefortino helmets discovered Mediterranean seabed to explain an unusual corrosion. Sci. Rep. 2021, 11, 23022. [Google Scholar]
- Martinović, I.; Pilić, Z. Corrosion behavior of copper, tin, and bronze CuSn14 in acid rain solution. Mater. Corros. 2021, 72, 1635–1642. [Google Scholar]
- Song, Z.; Tegus, O. Microstructure and Chlorine Ion Corrosion Performance in Bronze Earring Relics. Materials 2024, 17, 1734. [Google Scholar] [CrossRef]
- Khan, A.A.; Kaiser, S.; Kaiser, M.S. Electrochemical corrosion performance of copper and uniformly alloyed bronze and brass in 0.1 M NaCl solution. Rev. Mex. Fis. 2023, 69, 1–10. [Google Scholar]
- Song, Z.; Tegus, O. The corrosion properties of bronze alloys in NaCl solutions. Materials 2023, 16, 5144. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, K.; Zhang, T.; Dou, Z. Corrosion behavior of Cu–Sn bronze alloys in simulated archeological soil media. Mater. Corros. 2020, 71, 617–627. [Google Scholar]
- Hu, Y.; Wei, Y.; Li, L.; Zhang, J.; Chen, J. Same site, different corrosion phenomena caused by chloride: The effect of the archaeological context on bronzes from Sujialong Cemetery, China. J. Cult. Herit. 2021, 52, 23–30. [Google Scholar]
- Han, Z.; Huang, X.; Chen, J.; Chen, J.; Zhou, H. Study on the compounding of cysteine modified Schiff base and decanoic acid as corrosion inhibitors for bronze with patina. Surf. Interfaces 2024, 46, 103996. [Google Scholar] [CrossRef]
- Masi, G.; Josse, C.; Esvan, J.; Chiavari, C.; Bernardi, E.; Martini, C.; Bignozzi, M.C.; Monticelli, C.; Zanotto, F.; Balbo, A.; et al. Evaluation of the protectiveness of an organosilane coating on patinated Cu-Si-Mn bronze for contemporary art. Prog. Org. Coat. 2019, 127, 286–299. [Google Scholar] [CrossRef]
- Kosec, T.; Ropret, P. Efficiency of a corrosion inhibitor on bare, oxidized and real archeological bronze in indoor polluted atmosphere- digital image correlation approach. J. Cult. Herit. 2021, 52, 65–72. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Wang, J.; Luo, W. Photo-induced passivation: A new corrosion mitigation strategy for bronze artefacts. Corros. Sci. 2024, 239, 112401. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J. The effects of UV and visible light on the corrosion of bronze covered with an oxide film in aqueous solution. Corros. Sci. 2019, 154, 144–158. [Google Scholar] [CrossRef]
- Molina, M.T.; Cano, E.; Ramírez-Barat, B. Protective coatings for metallic heritage conservation: A review. J. Cult. Herit. 2023, 62, 99–113. [Google Scholar] [CrossRef]
- Monari, G.; Galeotti, M.; Matteini, M.; Salvadori, B.; Stifanese, R.; Traverso, P.; Vettori, S.; Letardi, P. Protective treatments for copper alloy artworks: Preliminary studies of sodium oxalate and limewater effectiveness against bronze disease. Environ. Sci. Pollut. Res. 2023, 30, 27441–27457. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Lv, G. Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media. Appl. Surf. Sci. 2006, 252, 6294–6303. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, H.; Baran, P.; Matras-Postolek, K.; Yang, P. Cu nanocrystals enhanced charge separation and transfer in superior thin g-C3N4 nanosheets. J. Alloys Compd. 2022, 919, 165892. [Google Scholar] [CrossRef]
- Tran, T.T.H.; Gichovi, J.; Commane, J.; Podlaha, E.J.; Seo, J. Examining amino acids as environmentally friendly corrosion inhibitors for Cu and Co chemical mechanical planarization. J. Environ. Chem. Eng. 2024, 12, 113669. [Google Scholar] [CrossRef]
- Stadnichenko, A.I.; Koshcheev, S.V.; Boronin, A.I. Interaction of Atomic Oxygen with a Polycrystalline Au Surface: XPS and TPD Study. J. Struct. Chem. 2023, 64, 871–883. [Google Scholar] [CrossRef]
- Han, B.; Wang, Z.; Chen, L.; Wu, B.; Chen, C.; Sun, B. Realization of high transparent mobility zinc-doped indium oxide (IZO) thin films by RF-magnetron sputtering. Int. J. Appl. Ceram. Technol. 2024, 21, 4001–4013. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, H.; Wu, J.; Ran, H.; Yang, K.; Wu, J. Comprehensive analysis of acid gases on mercury removal by CuCl2 modified char exposure to oxy-fuel environment: Experiment and XPS perception. Korean J. Chem. Eng. 2023, 40, 2855–2865. [Google Scholar] [CrossRef]
- Xia, T.; Li, Q.; Xue, Z.; Miao, Y.; Shen, X.; Zhao, X. Boosting the Structural and Electrochemical Stability of Chloride-Ion-Conducting Perovskite Solid Electrolytes by Alkali Ion Doping. Adv. Mater. 2025, 37, 2411605. [Google Scholar] [CrossRef]
- Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Bakina, K.A.; Isaenko, S.I.; Ob’edkov, A.M.; Kaverin, B.S.; Vilkov, I.V. Quantitative characterization of oxygen-containing groups on the surface of carbon materials: XPS and NEXAFS study. Appl. Sci. 2022, 12, 7744. [Google Scholar] [CrossRef]
- Beshenkov, V.G.; Pestov, S.M. Determination of the Bonding State of the Modified Surface of Polyetheretherketone by the Principal Component Analysis of X-Ray Photoelectron C 1s Spectra. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2021, 15, 46–51. [Google Scholar] [CrossRef]
- Saini, H.; Gangwar, S.; Yadav, C.S.; Khatri, M.S. Electrochemical Characterization and Corrosion Analysis of Cu–Ni Films Electrodeposited from Different pH Bath. Prot. Met. Phys. Chem. Surf. 2023, 59, 694–703. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Zhu, R.; Huang, Z.; Zhang, D.; Long, Z.; Li, Y. Fabrication of multi-layered paper-based supercapacitor anode by growing Cu(OH)2 nanorods on oxygen functional groups-rich sponge-like carbon fibers. Small 2024, 20, 2305136. [Google Scholar] [CrossRef]
- Kociołek-Balawejder, E.; Jacukowicz-Sobala, I.; Winiarski, J.; Mucha, I.; Winiarska, K. Sulphidation of Cu2+, CuO and Cu2O within the matrix of carboxylic cation exchangers–compositional, morphological and thermal properties of CuxS containing composites. React. Chem. Eng. 2025. [Google Scholar] [CrossRef]
- Simonovis, J.P.; Hunt, A.; Waluyo, I. In situ ambient pressure XPS study of Pt/Cu (111) single-atom alloy in catalytically relevant reaction conditions. J. Phys. D Appl. Phys. 2021, 54, 194004. [Google Scholar] [CrossRef]
- Chang, H.W.; Chen, S.C.; Chen, P.W.; Liu, F.J.; Tsai, Y.C. Constructing morphologically tunable copper oxide-based nanomaterials on Cu wire with/without the deposition of manganese oxide as bifunctional materials for glucose sensing and supercapacitors. Int. J. Mol. Sci. 2022, 23, 3299. [Google Scholar] [CrossRef]
- Yazar, S. Construction of enriched CuO/Cu2O electrode materials with discrete heteroatom-doped graphene oxide and investigation of capacitance performance for symmetrical supercapacitor application. Chem. Pap. 2023, 77, 5259–5273. [Google Scholar]
- García-Galvan, F.R.; Fajardo, S.; Barranco, V.; Feliu, S., Jr. Experimental apparent stern–geary coefficients for AZ31B Mg alloy in physiological body fluids for accurate corrosion rate determination. Metals 2021, 11, 391. [Google Scholar] [CrossRef]
- Mraied, H.; Wang, W.; Cai, W. Influence of Chemical Heterogeneity and Microstructure on the Corrosion Resistance of Biodegradable WE43 Magnesium Alloys. J. Mater. Chem. B 2019, 7, 6399–6411. [Google Scholar] [CrossRef]
- Bedair, M.A.; El-Sabbah, M.M.B.; Fouda, A.S.; Elaryian, H.M. Synthesis, electrochemical and quantum chemical studies of some prepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium. Corros. Sci. 2017, 128, 54–72. [Google Scholar]
- Chen, S.; Zhang, D. Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria. Corros. Sci. 2018, 136, 275–284. [Google Scholar]
- Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution. J. Mol. Struct. 2018, 1159, 46–54. [Google Scholar]
- Wu, L.; Ma, A.; Zhang, L.; Zheng, Y. Intergranular erosion corrosion of pure copper tube in flowing NaCl solution. Corros. Sci. 2022, 201, 110304. [Google Scholar]
- Ye, Y.; Kang, Z.; Wang, F.; Long, Y.; Guo, T.; Chen, D.; Kong, J.; Xu, L. Achieving hierarchical structure with superhydrophobicity and enhanced anti-corrosion via electrochemical etching and chemical vapor deposition. Appl. Surf. Sci. 2023, 610, 155362. [Google Scholar]
- Wu, J.; Li, N.; Luo, W. Corrosion Mechanisms and Conservation Strategies for Marine Recovered Bronze Artifacts: Insights from the Nanhai No. 1 Shipwreck. J. Marit. Archaeol. 2024, 19, 351–375. [Google Scholar]
- Liang, Z.; Jiang, K.; Zhang, T. Electrochemical and passive behaviour of Cu–Sn bronze in simulated archaeological soil media. Mater. Corros. 2021, 72, 743–756. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Song, J.; Fan, Z.; Zhang, L.; Shi, J.; Chen, J.; Xiao, K. Mechanism of corrosion behavior between Pb-rich phase and Cu-rich structure of high Sn–Pb bronze alloy in neutral salt spray environment. J. Mater. Res. Technol. 2024, 29, 881–896. [Google Scholar] [CrossRef]
- Mousavi, S.M.A.; Pitchumani, R. A study of corrosion on electrodeposited superhydrophobic copper surfaces. Corros. Sci. 2021, 186, 109420. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wu, R.; Zhang, X.; Luo, W.; Wang, L.; Wang, J. Study on the corrosion resistance of KH570 modified titanium oxide coating synthesized at low temperature on 304 stainless steel. Mater. Chem. Phys. 2025, 329, 130126. [Google Scholar] [CrossRef]
- Nagendra, J.; Sujani, S.; Vishkarma, M.K.; Bhati, S.; Al-Saady, F.A.; Gupta, L.R. Investigating the Corrosion Behaviour and Electrochemical Properties of Intermetallic Matrix Composites. In E3S Web of Conferences. EDP Sci. 2023, 430, 01120. [Google Scholar]
Immersion Solution | Immersion Time (h) | Name |
---|---|---|
3.5 wt.% NaCl solution | 0.5 | Cl-0.5 |
2 | Cl-2 | |
6 | Cl-6 | |
12 | Cl-12 | |
24 | Cl-24 | |
Simulated archaeological soil solution | 0.5 | SS-0.5 |
2 | SS-2 | |
6 | SS-6 | |
12 | SS-12 | |
24 | SS-24 |
Sample | Ecorr (V) | icorr (μA·cm−2) | Rp (kΩ·cm2) | βa | βc | ipass (A·cm−2) | PPR (V) |
---|---|---|---|---|---|---|---|
Cl-0.5 | −0.250 | 4.845 | 5.17 | 14.13 | 3.24 | 0.00686 | 0.098~0.133 |
Cl-2 | −0.278 | 25.58 | 4.00 | 0.74 | 3.51 | 0.00658 | 0.079~0.117 |
Cl-6 | −0.292 | 15.28 | 4.12 | 2.77 | 4.14 | 0.00589 | 0.059~0.095 |
Cl-12 | −0.289 | 23.32 | 3.91 | 0.75 | 4.02 | 0.00414 | 0.015~0.046 |
Cl-24 | −0.282 | 27.21 | 3.27 | 1.02 | 3.87 | 0.00264 | −0.027~0.011 |
SS-0.5 | −0.073 | 1.441 | 25.31 | 2.97 | 8.95 | - | - |
SS-2 | −0.074 | 1.183 | 27.56 | 3.27 | 10.07 | - | - |
SS-6 | −0.076 | 0.796 | 35.83 | 5.40 | 9.85 | - | - |
SS-12 | −0.066 | 0.807 | 39.05 | 4.56 | 9.23 | - | - |
SS-24 | −0.060 | 1.588 | 24.40 | 4.20 | 7.02 | 5.2 × 10−6 | −0.041~−0.016 |
Sample | Rsol (Ω·cm2) | Q1 (μΩ−1sn/cm2) | n1 | Rf (Ω·cm2) | Q2 (μΩ−1sn/cm2) | n2 | Rct (Ω·cm2) | χ2 (×10−3) |
---|---|---|---|---|---|---|---|---|
Cl-0.5 | 27.88 | 30.52 | 0.812 | 3.795 × 103 | 1367 | 0.479 | 9.763 × 106 | 0.64 |
Cl-2 | 22.23 | 235.9 | 0.323 | 2.894 | 21.16 | 0.826 | 2.452 × 104 | 0.72 |
Cl-6 | 23.58 | 272.7 | 0.689 | 33.92 | 65.57 | 0.771 | 6.132 × 105 | 0.92 |
Cl-12 | 24.73 | 302.5 | 0.672 | 4.068 | 74.15 | 0.814 | 7.534 × 104 | 0.78 |
Cl-24 | 27.24 | 32.36 | 0.803 | 2.639 | 41.21 | 0.704 | 2422 | 0.94 |
SS-0.5 | 0.0035 | 6.528 × 10−4 | 0.965 | 836.1 | 46.60 | 0.595 | 6.288 × 105 | 0.84 |
SS-2 | 0.0041 | 7.841 × 10−4 | 0.879 | 845.4 | 41.95 | 0.596 | 9.023 × 105 | 0.73 |
SS-6 | 0.00044 | 7.471 × 10−4 | 0.986 | 839.2 | 67.87 | 0.575 | 3.992 × 106 | 0.69 |
SS-12 | 912.7 | 7.363 | 0.869 | 15030 | 23.91 | 0.605 | 4.569 × 106 | 0.91 |
SS-24 | 877.9 | 12.07 | 0.845 | 13930 | 29.34 | 0.613 | 2.735 × 104 | 0.95 |
Sample | Time (h) | Ecorr (V) | icorr (μA·cm−2) | Rp (kΩ·cm2) | βa | βc | ipass (A·cm−2) | PPR (V) |
---|---|---|---|---|---|---|---|---|
SS-24 | 0.5 | −0.252 | 7.120 | 9.46 | 4.41 | 2.04 | 0.00425 | 0.014–0.063 |
2 | −0.265 | 9.426 | 6.85 | 3.69 | 3.05 | 0.00602 | 0.074–0.230 | |
Cu-Sn alloy | 0.5 | −0.212 | 20.18 | 2.23 | 1.92 | 3.37 | 0.00444 | 0.011–0.132 |
2 | −0.242 | 12.21 | 4.91 | 0.92 | 4.92 | 0.00658 | 0.083–0.117 |
Sample | Time (h) | Rsol (Ω·cm2) | Q1 (μΩ−1sn/cm2) | n1 | Rf (Ω·cm2) | Q2 (μΩ−1sn/cm2) | n2 | Rct (Ω·cm2) | χ2 (×10−3) |
---|---|---|---|---|---|---|---|---|---|
SS-24 | 0.5 | 28.02 | 10.26 | 0.894 | 905.0 | 50.78 | 0.531 | 8124 | 0.93 |
2 | 20.11 | 197.4 | 0.195 | 746.7 | 27.53 | 0.825 | 12118 | 0.85 | |
Cu-Sn alloys | 0.5 | 23.98 | 36.70 | 0.838 | 296.3 | 122.3 | 0.528 | 3884 | 0.87 |
2 | 24.53 | 52.08 | 0.803 | 325.4 | 101.9 | 0.426 | 7971 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Xia, Q.; Dong, W. Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments. Materials 2025, 18, 1359. https://doi.org/10.3390/ma18061359
Li B, Xia Q, Dong W. Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments. Materials. 2025; 18(6):1359. https://doi.org/10.3390/ma18061359
Chicago/Turabian StyleLi, Bingbing, Qixing Xia, and Wenqiang Dong. 2025. "Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments" Materials 18, no. 6: 1359. https://doi.org/10.3390/ma18061359
APA StyleLi, B., Xia, Q., & Dong, W. (2025). Comparative Study of the Corrosive Behaviors of Rust Layers on Bronze Ware in Different Corrosive Environments. Materials, 18(6), 1359. https://doi.org/10.3390/ma18061359