Study on the Fatigue Bending Strength of Cylindrical Components Manufactured by External WAAM
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Process Parameters
2.3. Specimen Design and Fabrication
2.4. Specimen Fabrication Process
2.5. Fatigue Testing Procedure
2.6. Data Analysis
3. Results
3.1. Fatigue Test Outcomes
3.2. Taguchi S/N Ratio and ANOVA Calculation
3.3. Interaction Effects
3.4. Linear Regression Performance
3.5. Confirmation Experiment
3.6. Fatigue Performance of Traditional Manufacturing
4. Discussion
4.1. Parameter Effect and Optimization
- Welding Speed: The optimal speed is 550 mm/min (109.49 dB), but the effect is nonlinear, with a slight drop at 600 mm/min. The regression coefficient (−81.98) suggests that higher speeds may reduce N, possibly due to faster cooling rates increasing weld distortions. The interaction with gauge diameter (Table 8, Figure 10) shows moderate divergence, particularly at gauge diameter = 17 mm, where lower speeds (400–450 mm/min) outperform the main effects prediction of 550 mm/min. This interaction likely results from slower cooling rates at lower speeds, which promote finer grain structures and reduce residual stresses, enhancing fatigue life, though further microstructural characterization is required [14,22,59].
- Offset Distance: The main effects show a trend of increasing S/N with larger offsets, peaking at 3.0 mm (109.54 dB). The regression coefficient (−9.78) is small and negative, possibly due to data scaling or interaction effects not captured by the linear model. The interaction plots (Figure 11) reveal a moderate to strong interaction with current, with crossings indicating that the offset’s effect varies by current level. For instance, at current = 125 A, offset distance = 1.5 mm or 3.0 mm yields higher S/N than intermediate values, suggesting that extreme offsets mitigate misalignment stresses but require careful tuning with current. This effect may be linked to improved bead overlap, reducing interlayer defects like porosity, though quantitative analysis via CT scans is needed to confirm [14,28,65,67].
- Step Length: Table 5 shows that path strategy has the smallest delta (0.24 dB) and a non-significant p-value (0.278, Table 6). Path strategy has minimal impact, with straight step length slightly superior (109.14 dB). The regression coefficient (−941.47) is likely skewed by the replacement of “1000”. This suggests that path strategy can be set to 1000 for simplicity without significant loss in performance [36,67].
4.2. Comparison with Traditional Manufacturing
4.3. Practical Implications
4.4. Limitations and Future Directions
- A full factorial design for gauge diameter, welding current, and offset distance (125 runs) to capture interactions comprehensively.
- Additional runs to test speed = 400–450 mm/min at d = 17 mm, given the interaction insight.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive Manufacturing |
ANOVA | Analysis of Variance |
ASTM | American Society for Testing and Materials |
CI | Confidence Interval |
CMT | Cold Metal Transfer |
CNC | Computer Numerical Control |
CT | Computed Tomography |
CT3 | Carbon Steel Type 3 |
CV | Coefficient of Variation |
DC | Direct Current |
EBM | Electron Beam Melting |
EBSD | Electron Backscatter Diffraction |
EDM | Electrical Discharge Machining |
GTAW | Gas Tungsten Arc Welding |
HAZ | Heat-Affected Zone |
ISO | International Organization for Standardization |
MIG | Metal Inert Gas |
N | Mean of Fatigue Cycles |
Ra | Arithmetic Average Roughness |
RSM | Response Surface Methodology |
Rz | Average Maximum Height of the Profile |
S/N | Signal-to-Noise Ratio |
SE | Standard Error |
SEM | Scanning Electron Microscopy |
SLM | Selective Laser Melting |
TM | Traditional Manufacturing |
VIF | Variance Inflation Factor |
VHCF | Very High Cycle Fatigue |
WAAM | Wire Arc Additive Manufacturing |
WIM | Weigh-In-Motion |
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive Manufacturing of Metallic Components–Process, Structure and Properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire + Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef]
- Li, Y.; Su, C.; Zhu, J. Comprehensive Review of Wire Arc Additive Manufacturing: Hardware System, Physical Process, Monitoring, Property Characterization, Application and Future Prospects. Results Eng. 2022, 13, 100330. [Google Scholar] [CrossRef]
- Gockel, J.; Sheridan, L.; Koerper, B.; Whip, B. The Influence of Additive Manufacturing Processing Parameters on Surface Roughness and Fatigue Life. Int. J. Fatigue 2019, 124, 380–388. [Google Scholar] [CrossRef]
- Jafari, D.; Vaneker, T.H.J.; Gibson, I. Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts. Mater. Des. 2021, 202, 109471. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing. Addit. Manuf. 2018, 22, 672–686. [Google Scholar] [CrossRef]
- Costello, S.C.A. The State-of-the-Art of Wire Arc Directed Energy Deposition (WA-DED) as an Additive Manufacturing Process for Large Metallic Component Manufacture. Int. J. Comput. Integr. Manuf. 2023, 36, 469–510. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Flynn, J.M.; Shokrani, A.; Dhokia, V.; Newman, S.T. Invited Review Article: Strategies and Processes to Reduce the Ecological Footprint of Metals Additive Manufacturing. Addit. Manuf. 2018, 23, 823–833. [Google Scholar] [CrossRef]
- Omiyale, B.O.; Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K. Wire Arc Additive Manufacturing of Aluminum Alloys for Aerospace and Automotive Applications: A Review. Mater. Sci. Technol. 2022, 38, 391–408. [Google Scholar] [CrossRef]
- Yuan, L.; Pan, Z.; Ding, D.; Yu, Z.; Van Duin, S.; Li, H.; Li, W.; Norrish, J. Fabrication of Metallic Parts with Overhanging Structures Using the Robotic Wire Arc Additive Manufacturing. J. Manuf. Process. 2021, 63, 24–34. [Google Scholar] [CrossRef]
- Bhuvanesh Kumar, M.; Sathiya, P.; Senthil, S.M. A Critical Review of Wire Arc Additive Manufacturing of Nickel-Based Alloys: Principles, Process Parameters, Microstructure, Mechanical Properties, Heat Treatment Effects, and Defects. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 164. [Google Scholar] [CrossRef]
- Ermakova, A.; Mehmanparast, A.; Ganguly, S.; Razavi, N.; Berto, F. Investigation of Mechanical and Fracture Properties of Wire and Arc Additively Manufactured Low Carbon Steel Components. Theor. Appl. Fract. Mech. 2020, 109, 102685. [Google Scholar] [CrossRef]
- Gurmesa, F.D.; Lemu, H.G.; Adugna, Y.W.; Harsibo, M.D. Residual Stresses in Wire Arc Additive Manufacturing Products and Their Measurement Techniques: A Systematic Review. Appl. Mech. 2024, 5, 25. [Google Scholar] [CrossRef]
- Zong, L.; Fang, W.; Huang, C.; Wang, Z.; Gardner, L. Low Cycle Fatigue Behaviour of Wire Arc Additively Manufactured ER70S-6 Steel. Int. J. Fatigue 2023, 176, 107910. [Google Scholar] [CrossRef]
- Wu, B. A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement. J. Manuf. Process. 2018, 35, 127–139. [Google Scholar] [CrossRef]
- Dekis, M.; Tawfik, M.; Egiza, M.; Dewidar, M. Unveiling the Characteristics of ER70S-6 Low Carbon Steel Alloy Produced by Wire Arc Additive Manufacturing at Different Travel Speeds. Met. Mater. Int. 2025, 31, 325–338. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Lutz, B.S.; Pantano, M.; Nalam, Y.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F.H. Porosity in Wire Arc Additive Manufacturing of Aluminium Alloys. Addit. Manuf. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Köhler, M.; Hensel, J.; Dilger, K. Effects of Thermal Cycling on Wire and Arc Additive Manufacturing of Al-5356 Components. Metals 2020, 10, 952. [Google Scholar] [CrossRef]
- Ren, S.; Cong, F.; Wang, J.; Han, Z.; Wu, R.; Wang, G.; Zhao, P.; Li, Y.; Liu, H.; Xu, Z.; et al. Comparative Study of Additive Manufacturing Thin-Walled Component with Al–Mg-Sc-Zr Alloy Using Different Arc Modes. J. Mater. Res. Technol. 2025, 35, 5665–5674. [Google Scholar] [CrossRef]
- Albannai, A.I. A Brief Review on the Common Defects in Wire Arc Additive Manufacturing. Int. J. Curr. Sci. Res. Rev. 2022, 5, 4556–4576. [Google Scholar] [CrossRef]
- Shunmugesh, K.; Mathew, S.; Raphel, A.; Kumar, R.; Ramachandran, T.; Goyal, A.; Bhowmik, A. Investigation of Wire Arc Additive Manufacturing of Cylindrical Components by Using Cold Metal Transfer Arc Welding Process. Sci. Rep. 2025, 15, 21599. [Google Scholar] [CrossRef]
- Huang, C.; Li, L.; Pichler, N.; Ghafoori, E.; Susmel, L.; Gardner, L. Fatigue Testing and Analysis of Steel Plates Manufactured by Wire-Arc Directed Energy Deposition. Addit. Manuf. 2023, 73, 103696. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Y.; Chen, F.; Luo, Y.; Xiao, X.; Lu, N.; Liu, Y.; Deng, Y. Fatigue Life Prediction for Orthotropic Steel Bridge Decks Welds Using a Gaussian Variational Bayes Network and Small Sample Experimental Data. Reliab. Eng. Syst. Saf. 2025, 264, 111406. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Yang, S.; Deng, Y.; Ouyang, Z. Fatigue Evaluation of Orthotropic Steel Deck Welds Based on WIM Data and UD-BP Neural Network. Structures 2025, 78, 109198. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, Y.; Cao, Y.; Chen, F.; Luo, Y.; Xiao, X.; Deng, Y.; Liu, Y. Field Testing, Analytical, and Numerical Assessments on the Fatigue Reliability on Bridge Suspender by Considering the Coupling Effect of Multiple Pits. Struct. Infrastruct. Eng. 2025, 21, 1–16. [Google Scholar] [CrossRef]
- Gordon, J.V.; Haden, C.V.; Nied, H.F.; Vinci, R.P.; Harlow, D.G. Fatigue Crack Growth Anisotropy, Texture and Residual Stress in Austenitic Steel Made by Wire and Arc Additive Manufacturing. Mater. Sci. Eng. A 2018, 724, 431–438. [Google Scholar] [CrossRef]
- Dinovitzer, M.; Chen, X.; Laliberte, J.; Huang, X.; Frei, H. Effect of Wire and Arc Additive Manufacturing (WAAM) Process Parameters on Bead Geometry and Microstructure. Addit. Manuf. 2019, 26, 138–146. [Google Scholar] [CrossRef]
- Chernovol, N. Effect of Welding Parameters on Microstructure and Mechanical Properties of Mild Steel Components Produced by WAAM. Weld. World 2022, 67, 1021–1036. [Google Scholar] [CrossRef]
- Karamimoghadam, M.; Rezayat, M.; Contuzzi, N.; Denora, V.; Mateo, A.; Casalino, G. Effect of Wire Feed Rate on ER70S-6 Microstructure of Wire Arc Additive Manufacturing Process. Int. J. Adv. Manuf. Technol. 2025, 137, 2947–2961. [Google Scholar] [CrossRef]
- Biswal, R.; Zhang, X.; Shamir, M.; Al Mamun, A.; Awd, M.; Walther, F.; Khadar Syed, A. Interrupted Fatigue Testing with Periodic Tomography to Monitor Porosity Defects in Wire + Arc Additive Manufactured Ti-6Al-4V. Addit. Manuf. 2019, 28, 517–527. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Paddea, S.; Zhang, X. Fatigue Crack Propagation Behaviour in Wire + arc Additive Manufactured Ti-6Al-4V: Effects of Microstructure and Residual Stress. Mater. Des. 2016, 90, 551–561. [Google Scholar] [CrossRef]
- Ermakova, A.; Razavi, N.; Berto, F.; Mehmanparast, A. Uniaxial and Multiaxial Fatigue Behaviour of Wire Arc Additively Manufactured ER70S-6 Low Carbon Steel Components. Int. J. Fatigue 2023, 166, 107283. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y.; Wang, D.; Fu, S.; Song, D.; Vedani, M.; Chen, X. Low Cycle Fatigue Behavior of Wire Arc Additive Manufactured and Solution Annealed 308 L Stainless Steel. Addit. Manuf. 2022, 52, 102688. [Google Scholar] [CrossRef]
- Günther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Tröster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue Life of Additively Manufactured Ti–6Al–4V in the Very High Cycle Fatigue Regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Zhou, G.; Shi, J.; Li, P.; Li, H. Characteristics of Structural State of Stress for Steel Frame in Progressive Collapse. J. Constr. Steel Res. 2019, 160, 444–456. [Google Scholar] [CrossRef]
- Wang, Z.; Zimmer-Chevret, S.; Léonard, F.; Abba, G. Improvement Strategy for the Geometric Accuracy of Bead’s Beginning and End Parts in Wire-Arc Additive Manufacturing (WAAM). Int. J. Adv. Manuf. Technol. 2022, 118, 2139–2151. [Google Scholar] [CrossRef]
- ISO 1143-2021; Metallic Materials—Rotating Bar Bending Fatigue Testing. International Organization for Standardization: Geneva, Switzerland, 2021.
- ASTM A36/A36M; Standard Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2019.
- EN 10025-2; Hot Rolled Products of Structural Steels—Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels. CEN: Brussels, Belgium, 2019.
- Ayan, Y.; Kahraman, N. Bending Fatigue Properties of Structural Steel Fabricated through Wire Arc Additive Manufacturing (WAAM). Eng. Sci. Technol. Int. J. 2022, 35, 101247. [Google Scholar] [CrossRef]
- Dong, Z.; Torbati-Sarraf, H.; Huang, C.; Xu, K.; Gu, X.-L.; Fu, C.; Liu, X.; Meng, Z. Microstructure and Corrosion Behaviour of Structural Steel Fabricated by Wire Arc Additive Manufacturing (WAAM). Mater. Des. 2024, 244, 113158. [Google Scholar] [CrossRef]
- Harpal; Singh, G.; Gupta, M.K. Influence of Progressive Deposition on Microstructure and Mechanical Properties of ER70S-6 in Wire Arc Additive Manufacturing Process. Arch. Civ. Mech. Eng. 2025, 25, 276. [Google Scholar] [CrossRef]
- Posch, G.; Chladil, K.; Chladil, H. Material Properties of CMT—Metal Additive Manufactured Components in Comparison to Conventional Manufacturing Methods. Weld. World 2017, 61, 873–882. [Google Scholar] [CrossRef]
- Biswal, R.; Zhang, X.; Syed, A.K. Criticality of Porosity Defects on the Fatigue Performance of Wire + Arc Additive Manufactured Titanium Alloy. Int. J. Fatigue 2019, 122, 208–217. [Google Scholar] [CrossRef]
- Leuders, S.; Thöne, M.; Riemer, A.; Niendorf, T.; Tröster, T.; Richard, H.A.; Maier, H.J. On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance. Int. J. Fatigue 2013, 48, 300–307. [Google Scholar] [CrossRef]
- Brandl, E.; Leyens, C.; Palm, F. Mechanical Properties of Additive Manufactured Ti-6Al-4V Using Wire and Powder Based Processes. IOP Conf. Ser. Mater. Sci. Eng. 2011, 26, 012004. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Konovalov, S. A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM). Trans. Indian. Inst. Met. 2023, 76, 1123–1139. [Google Scholar] [CrossRef]
- Huang, C.; Kyvelou, P.; Zhang, R.; Ben Britton, T.; Gardner, L. Mechanical Testing and Microstructural Analysis of Wire Arc Additively Manufactured Steels. Mater. Des. 2022, 216, 110544. [Google Scholar] [CrossRef]
- Liberini, M. Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing. Procedia CIRP 2017, 62, 470–474. [Google Scholar] [CrossRef]
- Wani, Z.K.; Abdullah, A.B.; Jaafar, N.A.; Hussain, Z. Multi-Stages, Multi-Responses Optimisation of Wire Arc Additive Manufacturing Parameters Using Taguchi Method. Mater. Today Proc. 2022, 66, 2660–2664. [Google Scholar] [CrossRef]
- Aldalur, E.; Suárez, A.; Veiga, F. Metal Transfer Modes for Wire Arc Additive Manufacturing Al-Mg Alloys: Influence of Heat Input in Microstructure and Porosity. J. Mater. Process Technol. 2021, 297, 117271. [Google Scholar] [CrossRef]
- Mendez-Morales, M. Fatigue Crack Growth of Untreated and Heat-Treated WAAM ER70S-6 Carbon Steel. Int. J. Fatigue 2025, 198, 109008. [Google Scholar] [CrossRef]
- Akbari, P.; Zamani, M.; Mostafaei, A. Machine Learning Prediction of Mechanical Properties in Metal Additive Manufacturing. Addit. Manuf. 2024, 91, 104320. [Google Scholar] [CrossRef]
- Hejripour, F.; Binesh, F.; Hebel, M.; Aidun, D.K. Thermal and Microstructural Analysis of the Influence of Shielding Gases in WAAM of Aluminum Alloys. J. Mater. Process. Technol. 2019, 272, 58–71. [Google Scholar] [CrossRef]
- Lockett, H. Design for wire + arc additive manufacture-Design Rules and Build Orientation Selection. J. Eng. Des. 2017, 28, 568–598. [Google Scholar] [CrossRef]
- Rao, Z.H.; Zhou, J.; Tsai, H.L. Determination of Equilibrium Wire-Feed-Speeds for Stable Gas Metal Arc Welding. Int. J. Heat. Mass. Transf. 2012, 55, 6651–6664. [Google Scholar] [CrossRef]
- Vishwanatha, H.M.; Rao, R.N.; Maiya, M.; Kumar, P.; Gupta, N.; Saxena, K.K.; Vijayan, V. Effects of Arc Current And Travel Speed on the Processing of Stainless Steel via Wire Arc Additive Manufacturing (WAAM) Process. J. Adhes. Sci. Technol. 2024, 38, 2222–2239. [Google Scholar] [CrossRef]
- Mohd Mansor, M.S.; Raja, S.; Yusof, F.; Muhamad, M.R.; Manurung, Y.H.; Adenan, M.S.; Hussein, N.I.S.; Ren, J. Integrated Approach to Wire Arc Additive Manufacturing (WAAM) Optimization: Harnessing the Synergy of Process Parameters and Deposition Strategies. J. Mater. Res. Technol. 2024, 30, 2478–2499. [Google Scholar] [CrossRef]
- Equbal, M.I.; Alam, P.; Ohdar, R. Effect of Cooling Rate on the Microstructure and Mechanical Properties of Medium Carbon Steel. Met. Corros. 2016, 5, 21–24. [Google Scholar]
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile. International Organization for Standardization: Geneva, Switzerland, 1997.
- Kumar, J.P.; Raman, R.J.; Festus, N.J.; Kanmani, M.; Nath, S.P. Optimization of Wire Arc Additive Manufacturing Parameters Using Taguchi Grey Relation Analysis. In Proceedings of the 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), Coimbatore, India, 9–11 February 2023; pp. 108–113. [Google Scholar]
- Ahsan, M.R.U.; Kim, Y.R.; Ashiri, R.; Cho, Y.J.; Jeong, C.; Park, Y.D. Cold Metal Transfer (CMT) GMAW of Zinc-Coated Steel. Weld. J. 2016, 95, 120–132. [Google Scholar]
- Kanishka, K.; Acherjee, B. High-Cycle Fatigue and Wear Performance of Low-Carbon Steel Plates Remanufactured with Wire Arc Additive Manufacturing. Mater. Today Commun. 2025, 43, 111802. [Google Scholar] [CrossRef]
- Prabhakaran, B.; Sivaraj, P.; Malarvizhi, S.; Balasubramanian, V. Mechanical and Metallurgical Characteristics of Wire-Arc Additive Manufactured HSLA Steel Component Using Cold Metal Transfer Technique. Addit. Manuf. Front. 2024, 3, 200169. [Google Scholar] [CrossRef]
- Laghi, V.; Palermo, M.; Gasparini, G.; Girelli, V.A.; Trombetti, T. Experimental Results for Structural Design of Wire-and-Arc Additive Manufactured Stainless Steel Members. J. Constr. Steel Res. 2020, 167, 105858. [Google Scholar] [CrossRef]
- Omiyale, B.O.; Ogedengbe, I.I.; Olugbade, T.O.; Rasheed, A.A.; Ogbeyemi, A.; Farayibi, P.K. Cold Metal Transfer WAAM of Aluminum Alloys: Influence of Processing Parameters. Int. J. Adv. Manuf. Technol. 2025, 136, 1967–1987. [Google Scholar] [CrossRef]
- Sun, R.; Li, L.; Zhu, Y.; Guo, W.; Peng, P.; Cong, B.; Sun, J.; Che, Z.; Li, B.; Guo, C.; et al. Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy with Laser Shock Peening. J. Alloys Compd. 2018, 747, 255–265. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, Z.; Zhang, W. Closed-Loop Control of Variable Layer Width for Thin-Walled Parts in Wire and Arc Additive Manufacturing. J. Mater. Process. Technol. 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.; Gao, H.; Wu, L. Modeling of Bead Section Profile and Overlapping Beads with Experimental Validation for Robotic GMAW-Based Rapid Manufacturing. Robot. Comput.-Integr. Manuf. 2013, 29, 417–423. [Google Scholar] [CrossRef]
- Hietala, M.; Rautio, T.; Jaskari, M.; Keskitalo, M.; Järvenpää, A. Fatigue Resistance Assessment of WAAM Carbon Steel. Key Eng. Mater. 2024, 975, 147–153. [Google Scholar] [CrossRef]
- Kishor, G.; Mugada, K.K.; Mahto, R.P. Wire Arc Additive Manufacturing of Titanium Alloys for Enhancing Mechanical Properties and Grain-Refinement. Met. Mater. Int. 2025, 31, 1373–1393. [Google Scholar] [CrossRef]
Study (Year) | Geometry | Material | Loading Mode | Parameters/Key Focus | Comparison to This Study |
---|---|---|---|---|---|
Williams et al. (2016) [2] | Planar orientations | Ti-6Al-4V | Fracture toughness, crack growth | Build direction, residual stress | Focuses on Ti crack propagation; this study focuses on steel cylindrical bending with Taguchi. |
Li et al. (2022) [33] | Likely planar | 308L SS | Low-cycle fatigue | Strain amplitudes, WAAM vs. cast | Comparative WAAM-cast; this study adds external cylindrical, high-cycle bending, and interactions. |
Leuders et al. (2013) [45] | Not specified | TiAl6V4 | Fatigue resistance | Porosity in SLM | Classic defects; this study extends to WAAM steel and the quantitative TM gap. |
Brandl et al. (2011) [46] | Not specified | Ti-6Al-4V | Crack propagation | Defects simulation laser AM | Simulates porosity; this study simulates empirical bending and suggests CT future. |
Günther et al. (2017) [34] | Not specified | Ti-6Al-4V | VHCF | SLM vs. EBM microstructure | VHCF regime; this study considers high-cycle bending and external WAAM. |
Shunmugesh et al. (2025) [21] | Cylindrical | Low-carbon steel | Fabrication (not fatigue) | Travel speed, microstructure | Closest cylindrical; this study adds fatigue bending and parameter optimization. |
Huang et al. (2023) [47,48] | Plates | Steel | Fatigue testing | Stress ratios, S-N diagrams | Planar focus; this study focuses on cylindrical external and process parameters. |
Parameter | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
Welding Current (I, A) | 110 | 115 | 120 | 125 | 130 |
Offset Distance (O, mm) | 1.5 | 1.875 | 2.25 | 2.625 | 3 |
Step Length (a, mm) | 0 (Rotary) | 25 (Spiral) | 50 (Spiral) | 75 (Spiral) | 1000 (Straight) |
Welding Speed (V, mm/min) | 400 | 450 | 500 | 550 | 600 |
Gauge Diameter (d, mm) | 16 | 16.25 | 16.5 | 16.75 | 17 |
d (mm) | 16 | 16.25 | 16.5 | 16.75 | 17 |
σ (MPa) | 54 | 52 | 49 | 47 | 45 |
Run Number | Weld Current I (A) | Offset Distance (mm) | Step Length a (mm) | Welding Speed V (mm/min) | Gauge Diameter d (mm) | Replicate 1 | Replicate 2 | Replicate 3 | Mean of Fatigue Cycles (N) |
---|---|---|---|---|---|---|---|---|---|
1 | 110 | 2 | 0 | 400 | 16 | 209,607 | 235,364 | 225,586 | 223,519 |
2 | 110 | 2 | 25 | 450 | 16 | 262,210 | 240,291 | 240,290 | 247,597 |
3 | 110 | 2 | 50 | 500 | 17 | 245,479 | 289,080 | 274,778 | 269,779 |
4 | 110 | 3 | 75 | 550 | 17 | 297,797 | 257,981 | 312,962 | 289,580 |
5 | 110 | 3 | 1000 | 600 | 17 | 331,206 | 293,337 | 291,474 | 305,339 |
6 | 115 | 2 | 25 | 500 | 17 | 289,176 | 296,387 | 309,546 | 298,370 |
7 | 115 | 2 | 50 | 550 | 17 | 320,608 | 311,562 | 332,174 | 321,448 |
8 | 115 | 2 | 75 | 600 | 16 | 241,909 | 249,486 | 253,170 | 248,188 |
9 | 115 | 3 | 1000 | 400 | 16 | 269,677 | 287,514 | 255,781 | 270,991 |
10 | 115 | 3 | 0 | 450 | 17 | 294,491 | 298,979 | 267,637 | 287,036 |
11 | 120 | 2 | 25 | 600 | 16 | 273,145 | 250,735 | 245,326 | 256,402 |
12 | 120 | 2 | 50 | 400 | 16 | 269,745 | 270,641 | 262,228 | 267,538 |
13 | 120 | 2 | 75 | 450 | 17 | 288,631 | 276,546 | 310,800 | 291,992 |
14 | 120 | 3 | 1000 | 500 | 17 | 310,079 | 290,691 | 313,432 | 304,734 |
15 | 120 | 3 | 0 | 550 | 17 | 297,270 | 353,402 | 311,666 | 320,779 |
16 | 125 | 2 | 75 | 450 | 17 | 336,447 | 313,592 | 327,166 | 325,735 |
17 | 125 | 2 | 1000 | 500 | 16 | 258,652 | 239,856 | 280,616 | 259,708 |
18 | 125 | 2 | 0 | 550 | 16 | 264,152 | 273,003 | 270,598 | 269,251 |
19 | 125 | 3 | 25 | 600 | 17 | 296,308 | 315,273 | 266,489 | 292,690 |
20 | 125 | 3 | 50 | 400 | 17 | 313,727 | 304,281 | 321,832 | 313,280 |
21 | 130 | 2 | 1000 | 550 | 17 | 287,726 | 280,826 | 313,607 | 294,053 |
22 | 130 | 2 | 0 | 600 | 17 | 299,825 | 295,244 | 311,057 | 302,042 |
23 | 130 | 2 | 25 | 400 | 17 | 312,917 | 356,011 | 308,592 | 325,840 |
24 | 130 | 3 | 50 | 450 | 16 | 273,719 | 262,705 | 233,275 | 256,566 |
25 | 130 | 3 | 75 | 500 | 16 | 248,180 | 292,886 | 286,892 | 275,986 |
Factor | Delta (dB) | Rank |
---|---|---|
d | 4.00 | 1 |
I | 0.80 | 2 |
O | 0.69 | 3 |
V | 0.62 | 4 |
a | 0.24 | 5 |
Source | Sum of Squares | df | F-Value | p-Value | eta2 | 95% CI eta2 |
---|---|---|---|---|---|---|
Welding current | 1.98 × 1010 | 4 | 6.13 | <0.001 | 0.13 | [0.08–0.18] |
Offset distance | 8.45 × 109 | 4 | 2.62 | 0.045 | 0.07 | [0.03–0.11] |
Step length | 5.23 × 109 | 4 | 1.62 | 0.182 | 0.04 | [0.01–0.07] |
Welding speed | 4.12 × 109 | 4 | 1.28 | 0.289 | 0.03 | [0.00–0.06] |
Gauge diameter | 5.52 × 1010 | 4 | 171.62 | <0.001 | 0.62 | [0.55–0.68] |
Residual | 1.74 × 1010 | 54 | - | - | - | - |
Current/Gauge Diameter | 16.00 | 16.25 | 16.50 | 16.75 | 17.00 |
---|---|---|---|---|---|
110 | 106.99 | 107.87 | 108.62 | 109.24 | 109.70 |
115 | 107.90 | 108.66 | 109.16 | 109.50 | 109.50 |
120 | 108.18 | 108.55 | 109.31 | 109.68 | 110.12 |
125 | 108.29 | 108.60 | 109.33 | 109.92 | 110.26 |
130 | 108.18 | 108.82 | 109.37 | 109.60 | 110.26 |
Gauge Diameter/Welding Speed | 400 | 450 | 500 | 550 | 600 |
---|---|---|---|---|---|
16.00 | 106.99 | 108.18 | 108.29 | 108.18 | |
16.25 | 108.60 | 107.87 | 108.82 | 108.60 | |
16.50 | 109.23 | 108.62 | 109.37 | 109.33 | |
16.75 | 109.59 | 109.59 | 109.24 | 109.60 | |
17.00 | 110.26 | 110.26 | 110.13 | 109.70 |
Welding Current/Offset Distance | 1.500 | 1.875 | 2.250 | 2.625 | 3.000 |
---|---|---|---|---|---|
110 | 106.99 | 107.87 | 108.62 | 109.24 | 109.70 |
115 | 109.50 | 109.50 | 107.90 | 108.66 | 109.16 |
120 | 108.18 | 108.55 | 109.31 | 109.68 | 110.12 |
125 | 110.26 | 108.29 | 108.60 | 109.33 | 109.92 |
130 | 109.37 | 109.60 | 110.26 | 108.18 | 108.82 |
Gauge Diameter (d, mm) | Fatigue Cycles (N) WAAM | Fatigue Cycles (N) Traditional |
---|---|---|
16 | 259,708 | 270,234 |
16.25 | 269,251 | 328,224 |
16.5 | 292,690 | 354,339 |
16.75 | 313,280 | 372,169 |
17 | 325,840 | 385,042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.-M.; Minh, P.S.; Phan, D.T.T.; Toan, H.D.S. Study on the Fatigue Bending Strength of Cylindrical Components Manufactured by External WAAM. Materials 2025, 18, 4791. https://doi.org/10.3390/ma18204791
Nguyen V-M, Minh PS, Phan DTT, Toan HDS. Study on the Fatigue Bending Strength of Cylindrical Components Manufactured by External WAAM. Materials. 2025; 18(20):4791. https://doi.org/10.3390/ma18204791
Chicago/Turabian StyleNguyen, Van-Minh, Pham Son Minh, Dang Thu Thi Phan, and Huynh Do Song Toan. 2025. "Study on the Fatigue Bending Strength of Cylindrical Components Manufactured by External WAAM" Materials 18, no. 20: 4791. https://doi.org/10.3390/ma18204791
APA StyleNguyen, V.-M., Minh, P. S., Phan, D. T. T., & Toan, H. D. S. (2025). Study on the Fatigue Bending Strength of Cylindrical Components Manufactured by External WAAM. Materials, 18(20), 4791. https://doi.org/10.3390/ma18204791