Corrosion Resistance of Amorphous Carbon Coatings Doped with Nitrogen and Hydrogen in 3.5% NaCl Solution and Mine Waters
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Open-Circuit Potential
3.2. Potentiodynamic Measurements
3.3. Corrosion Products
3.4. Adhesion Quallity
4. Conclusions
- Carbon coatings significantly enhance the corrosion resistance of 34CrAlNi steel substrates.
- The most favorable corrosion resistance parameters in an environment simulating actual service conditions were achieved by the 3:4:2 coating.
- The decisive factors influencing corrosion behavior were coating thickness and adhesion to the substrate, which governed electrochemical parameters and the nature of damage to a greater extent than chemical composition.
- Increasing the hydrogen and nitrogen content in carbon coatings improves their corrosion resistance by enhancing coating adhesion to the substrate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhushan, B. Chemical, Mechanical and Tribological Characterization of Ultra-Thin and Hard Amorphous Carbon Coatings as Thin as 3.5 Nm: Recent Developments. Diam. Relat. Mater. 1999, 8, 1985–2015. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. Tribology of Diamond-like Carbon Films: Fundamentals and Applications; 1. Aufl.; Springer: New York, NY, USA, 2008; ISBN 978-0-387-30264-5. [Google Scholar]
- Tyagi, A.; Walia, R.S.; Murtaza, Q.; Pandey, S.M.; Tyagi, P.K.; Bajaj, B. A Critical Review of Diamond like Carbon Coating for Wear Resistance Applications. Int. J. Refract. Met. Hard Mater. 2019, 78, 107–122. [Google Scholar] [CrossRef]
- Charitidis, C.A. Nanomechanical and Nanotribological Properties of Carbon-Based Thin Films: A Review. Int. J. Refract. Met. Hard Mater. 2010, 28, 51–70. [Google Scholar] [CrossRef]
- Al Mahmud, K.A.H.; Kalam, M.A.; Masjuki, H.H.; Mobarak, H.M.; Zulkifli, N.W.M. An Updated Overview of Diamond-like Carbon Coating in Tribology. Crit. Rev. Solid State Mater. Sci. 2015, 40, 90–118. [Google Scholar] [CrossRef]
- Jeng, Y.-R.; Islam, S.; Wu, K.-T.; Erdemir, A.; Eryilmaz, O. Investigation of Nano-Mechanical and- Tribological Properties of Hydrogenated Diamond Like Carbon (DLC) Coatings. J. Mech. 2017, 33, 769–776. [Google Scholar] [CrossRef]
- Sharma, R.; Barhai, P.K.; Kumari, N. Corrosion Resistant Behaviour of DLC Films. Thin Solid Films 2008, 516, 5397–5403. [Google Scholar] [CrossRef]
- Huang, G.F.; Lingping, Z.; Weiqing, H.; Lihua, Z.; Shaolu, L.; Deyi, L. The Mechanical Performance and Anti-Corrosion Behavior of Diamond-like Carbon Film. Diam. Relat. Mater. 2003, 12, 1406–1410. [Google Scholar] [CrossRef]
- Dalibón, E.L.; Escalada, L.; Simison, S.; Forsich, C.; Heim, D.; Brühl, S.P. Mechanical and Corrosion Behavior of Thick and Soft DLC Coatings. Surf. Coat. Technol. 2017, 312, 101–109. [Google Scholar] [CrossRef]
- Borowski, T.; Spychalski, M.; Rożniatowski, K.; Kulikowski, K. Corrosion Resistance of Nitrogen-Doped DLC Coatings Produced in Glow Discharge Conditions on Nitrided Austenitic Steel. Arch. Metall. Mater. 2020, 65, 1141–1146. [Google Scholar] [CrossRef]
- Khun, N.W.; Liu, E.; Zeng, X.T. Corrosion Behavior of Nitrogen Doped Diamond-like Carbon Thin Films in NaCl Solutions. Corros. Sci. 2009, 51, 2158–2164. [Google Scholar] [CrossRef]
- He, Y.; Su, F.; Sun, J.; Li, Z.; Liu, Y. Microstructure and Tribological Properties of DLC Films with Varying Ti Interlayer Thicknesses on HNBR Substrate Deposited by PVD. Surf. Coat. Technol. 2025, 513, 132515. [Google Scholar] [CrossRef]
- Tapia-Ramírez, V.H.; Mondragón-Rodríguez, G.C.; Bravo-Sánchez, M.; Martínez-Olvera, F.; Cáceres-Díaz, L.A.; Félix-Martínez, C.; González-Carmona, J.M. Effect of Nitrogen Doping on the Mechanical and Tribological Properties of Hydrogen-Free DLC Coatings Deposited by Arc-PVD at an Industrial Scale. Surf. Coat. Technol. 2025, 499, 131825. [Google Scholar] [CrossRef]
- Duminica, F.-D.; Belchi, R.; Libralesso, L.; Mercier, D. Investigation of Cr(N)/DLC Multilayer Coatings Elaborated by PVD for High Wear Resistance and Low Friction Applications. Surf. Coat. Technol. 2018, 337, 396–403. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Y.; Ma, X.; Zhang, D.; Wang, L.; Li, X. Tribocorrosion Behaviors of Multilayer PVD DLC Coated 304L Stainless Steel in Seawater. Diam. Relat. Mater. 2017, 79, 70–78. [Google Scholar] [CrossRef]
- Bhushan, B.; Kellock, A.J.; Cho, N.-H.; Ager, J.W. Characterization of Chemical Bonding and Physical Characteristics of Diamond-like Amorphous Carbon and Diamond Films. J. Mater. Res. 1992, 7, 404–410. [Google Scholar] [CrossRef]
- Grill, A. Plasma-Deposited Diamondlike Carbon and Related Materials. IBM J. Res. Dev. 1999, 43, 147–161. [Google Scholar] [CrossRef]
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef]
- Tither, D.; Ahmed, W.; Ahmed, E. Hybrid Plasma CVD of Diamond-like Carbon (DLC) at Low Temperatures. J. Mater. Sci. 1997, 32, 1931–1936. [Google Scholar] [CrossRef]
- Nowak, D.; Januszewicz, B.; Niedzielski, P. Morphology, Mechanical and Tribological Properties of Hybrid Carbon Layer Fabricated by Radio Frequency Plasma Assisted Chemical Vapor Deposition. Surf. Coat. Technol. 2017, 329, 1–10. [Google Scholar] [CrossRef]
- Wunsch, K.; Roguska, A.; Chodun, R.; Skołek, E.; Marciniak, S.; Kulikowski, K.; Sobiecki, J.R. Adhesion and Chemical Composition of Carbon Coatings Produced in Low-Temperature RFCVD Processes on Substrates of 35CrMnSi5-5-4 Steel with Ultra-Fine Grain Bainitic and Martensitic Structure. Vacuum 2025, 234, 114055. [Google Scholar] [CrossRef]
- Jokari-Sheshdeh, M.; Mahboubi, F.; Dehghani, K. Structure and Tribological Behavior of Diamond-like Carbon Coatings Deposited on the Martensitic Stainless Steel: The Influence of Gas Composition and Temperature. Diam. Relat. Mater. 2018, 81, 77–88. [Google Scholar] [CrossRef]
- Cui, M.; Pu, J.; Zhang, G.; Wang, L.; Xue, Q. The Corrosion Behaviors of Multilayer Diamond-like Carbon Coatings: Influence of Deposition Periods and Corrosive Medium. RSC Adv. 2016, 6, 28570–28578. [Google Scholar] [CrossRef]
- Zhang, T.F.; Deng, Q.Y.; Liu, B.; Wu, B.J.; Jing, F.J.; Leng, Y.X.; Huang, N. Wear and Corrosion Properties of Diamond like Carbon (DLC) Coating on Stainless Steel, CoCrMo and Ti6Al4V Substrates. Surf. Coat. Technol. 2015, 273, 12–19. [Google Scholar] [CrossRef]
- Song, J.; Tian, H.; Li, J.; Zhang, P.; Sun, A. Effect of Methane and Acetylene Pre-Gases on the Corrosion Resistance of DLC Coatings. Vacuum 2024, 221, 112899. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Wu, Z.; Qin, Z.; Chen, H.; Hu, W. Effect of Deposition Pressure on the Microstructure and Corrosion Resistance of Diamond-Like Carbon Films Prepared by Plasma Enhanced Chemical Vapor Deposition. Int. J. Electrochem. Sci. 2020, 15, 830–838. [Google Scholar] [CrossRef]
- Maerten, T.; Jaoul, C.; Oltra, R.; Duport, P.; Le Niniven, C.; Tristant, P.; Meunier, F.; Jarry, O. Micrometric Growth Defects of DLC Thin Films. C 2019, 5, 73. [Google Scholar] [CrossRef]
- Ramos, B.B.; Vicente, F.A.; Hammes, G.; Bendo, T.; Binder, C. Enhancing Corrosion and Tribology Performance of Stainless Steel with DLC Coatings: Effects of Doping and Multilayered Structures. Surf. Coat. Technol. 2024, 477, 130334. [Google Scholar] [CrossRef]
- Marciano, F.R.; Almeida, E.C.; Lima-Oliveira, D.A.; Corat, E.J.; Trava-Airoldi, V.J. Improvement of DLC Electrochemical Corrosion Resistance by Addiction of Fluorine. Diam. Relat. Mater. 2010, 19, 537–540. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Mahboubi, F.; Yazdani, S. Comparison between Corrosion Behaviour of DLC and N-DLC Coatings Deposited by DC-Pulsed PACVD Technique. Diam. Relat. Mater. 2019, 95, 60–70. [Google Scholar] [CrossRef]
- Hamdy, A.S. Electrochemical Behavior of Diamond-like-Carbon Coatings Deposited on AlTiC (Al2O3 + TiC) Ceramic Composite Substrate in HCl Solution. Electrochim. Acta 2011, 56, 1554–1562. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like Amorphous Carbon. Mater. Sci. Eng. R Rep. Rev. J. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Warner, J.D.; Pouch, J.J.; Alterovitz, S.A.; Liu, D.C.; Lanford, W.A. Plasma Deposited Hydrogenated Carbon on GaAs and InP. J. Vac. Sci. Technol. A 1985, 3, 900–903. [Google Scholar] [CrossRef]
- Kalish, R.; Amir, O.; Brener, R.; Spits, R.A.; Derry, T.E. Incorporation of Nitrogen into Amorphous-Hydrogenated Carbon (Diamond-like) Films. Appl. Phys. A 1991, 52, 48–51. [Google Scholar] [CrossRef]
- Costa, A.; Ferreira, F.; Colaux, J.L.; Vahidi, A.; Serra, R.; Oliveira, J. Effect of Hydrogen Incorporation on the Mechanical Properties of DLC Films Deposited by HiPIMS in DOMS Mode. Surf. Coat. Technol. 2023, 473, 129980. [Google Scholar] [CrossRef]
- Deng, X.R.; Leng, Y.X.; Dong, X.; Sun, H.; Huang, N. Effect of Hydrogen Flow on the Properties of Hydrogenated Amorphous Carbon Films Fabricated by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition. Surf. Coat. Technol. 2011, 206, 1007–1010. [Google Scholar] [CrossRef]
- Rubin, M.; Hopper, C.B.; Cho, N.H.; Bhushan, B. Optical and Mechanical Properties of Dc Sputtered Carbon Films. J. Mater. Res. 1990, 5, 2538–2542. [Google Scholar] [CrossRef]
- Peng, X.L.; Clyne, T.W. Residual Stress and Debonding of DLC Films on Metallic Substrates. Diam. Relat. Mater. 1998, 7, 944–950. [Google Scholar] [CrossRef]
- Polaki, S.R.; Ganesan, K.; Srivastava, S.K.; Kamruddin, M.; Tyagi, A.K. The Role of Substrate Bias and Nitrogen Doping on the Structural Evolution and Local Elastic Modulus of Diamond-like Carbon Films. J. Phys. Appl. Phys. 2017, 50, 175601. [Google Scholar] [CrossRef]
- Wood, P.; Wydeven, T.; Tsuji, O. Influence of Reactant Gas Composition on Selected Properties of N-Doped Hydrogenated Amorphous Carbon Films. Thin Solid Film. 1995, 258, 151–158. [Google Scholar] [CrossRef]
- Rabbani, F.; Escobar Galindo, R.; Arnoldbik, W.M.; van der Zwaag, S.; van Veen, A.; Schut, H. Stress Reduction in A-C:H Coatings through the Addition of Nitrogen to the Feed Gas. Diam. Relat. Mater. 2004, 13, 1645–1657. [Google Scholar] [CrossRef]
- Freire, F.L. Amorphous Hydrogenated Carbon Films: Effects of Nitrogen and Fluorine Incorporation on the Film Microstructure and Mechanical Properties: A Review. J. Non-Cryst. Solids 2002, 304, 251–258. [Google Scholar] [CrossRef]
- Ray, S.C.; Pong, W.F.; Papakonstantinou, P. Iron, Nitrogen and Silicon Doped Diamond like Carbon (DLC) Thin Films: A Comparative Study. Thin Solid Film. 2016, 610, 42–47. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Mahboubi, F. A Comparative Study of Microstructural and Tribological Properties of N-DLC/DLC Double Layer and Single Layer Coatings Deposited by DC-Pulsed PACVD Process. Ceram. Int. 2019, 45, 7736–7742. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Mahboubi, F.; Oskouie, A. Structural Evolution and Tribological Behavior of Nitrogen-Doped DLC Coatings Deposited by Pulsed DC PACVD Method. Diam. Relat. Mater. 2019, 91, 74–83. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Mahboubi, F. RSM Study on the Influence of Nitrogen Flow Rate and Deposition Temperature on the Tribological Properties of Nitrogen Doped Diamond-like Carbon Coating. Surf. Interfaces 2020, 19, 100470. [Google Scholar] [CrossRef]
- Wunsch, K.; Borowski, T.; Skołek, E.; Roguska, A.; Chodun, R.; Urbańczyk, M.; Kulikowski, K.; Spychalski, M.; Wieczorek, A.; Sobiecki, J.R. Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel. Coatings 2025, 15, 877. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Vidakis, N.; Antoniadis, A.; Bilalis, N. The VDI 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds. J. Mater. Process. Technol. 2003, 143–144, 481–485. [Google Scholar] [CrossRef]
- Verein Deutscher Ingenieure Normen, VDI 3198; Dusseldorf. 1991. Available online: https://www.vdi.de/?gad_source=1&gad_campaignid=22764717526&gclid=EAIaIQobChMIgt3wx7ubkAMVw-wWBR1JhCAlEAAYASAAEgJee_D_BwE (accessed on 18 September 2025).
- Dizisaz, M.; Azadi, M.; Hafazeh, A.; Azadi, M.; Agharebparast, M.S. Evaluations of Corrosion Resistance of 16 MnCr5 Steel/DLC Coatings with Various CH4/Ar Ratio in Two Saline Environments. Diam. Relat. Mater. 2025, 156, 112404. [Google Scholar] [CrossRef]
- Zou, Y.S.; Wu, Y.F.; Huang, R.F.; Sun, C.; Wen, L.S. Mechanical Properties and Thermal Stability of Nitrogen Incorporated Diamond-like Carbon Films. Vacuum 2009, 83, 1406–1410. [Google Scholar] [CrossRef]
Element Content [%] | |||||||
---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Cr | Ni | Al |
0.3–0.37 | <0.4 | 0.4–0.7 | <0.025 | <0.035 | 1.5–1.8 | 0.85–1.15 | 0.8–1.2 |
Content [mg/L] | ||||
---|---|---|---|---|
NO3− | Cl− | SO42− | Ca2+ | HCO3− |
24,085 | 24,014 | 63,345 | 1000 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wunsch, K.; Borowski, T.; Sobiecki, J.R.; Wieczorek, A. Corrosion Resistance of Amorphous Carbon Coatings Doped with Nitrogen and Hydrogen in 3.5% NaCl Solution and Mine Waters. Materials 2025, 18, 4703. https://doi.org/10.3390/ma18204703
Wunsch K, Borowski T, Sobiecki JR, Wieczorek A. Corrosion Resistance of Amorphous Carbon Coatings Doped with Nitrogen and Hydrogen in 3.5% NaCl Solution and Mine Waters. Materials. 2025; 18(20):4703. https://doi.org/10.3390/ma18204703
Chicago/Turabian StyleWunsch, Karol, Tomasz Borowski, Jerzy Robert Sobiecki, and Andrzej Wieczorek. 2025. "Corrosion Resistance of Amorphous Carbon Coatings Doped with Nitrogen and Hydrogen in 3.5% NaCl Solution and Mine Waters" Materials 18, no. 20: 4703. https://doi.org/10.3390/ma18204703
APA StyleWunsch, K., Borowski, T., Sobiecki, J. R., & Wieczorek, A. (2025). Corrosion Resistance of Amorphous Carbon Coatings Doped with Nitrogen and Hydrogen in 3.5% NaCl Solution and Mine Waters. Materials, 18(20), 4703. https://doi.org/10.3390/ma18204703